Spaces:
Running
Running
File size: 2,705 Bytes
51348d0 f87f969 bd0c703 f87f969 2fa9831 2bb8a76 f87f969 20cc32e bd0c703 81ec3b4 2bb8a76 f87f969 7201227 f87f969 20cc32e f87f969 2bb8a76 20cc32e 2bb8a76 bd0c703 81ec3b4 57bafce f87f969 51348d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
import streamlit as st
from transformers import pipeline
from ModelDriver import *
import numpy as np
# Add a title
st.title('GPT Detection Demo')
st.write("This is a demo for GPT detection. You can use this demo to test the model. There are 3 variations of the Roberta Classifier Model, The model was trained on CHEAT, GPABenchmark, OpenGPT datasets.You can choose dataset variation of the model on the sidebar.")
st.write("CHEAT - Scientific Abstract Generated by GPT3.5")
st.write("GPABenchmark - Computer Science Abstract Generated by GPT3.5")
st.write("OpenGPT - General News Article Generated by GPT3.5")
# st.write("Reference on how we built Roberta Sentinel: https://arxiv.org/abs/2305.07969")
# # Add 4 options for 4 models
# ModelOption = st.sidebar.selectbox(
# 'Which Model do you want to use?',
# ('RobertaClassifier'),
# )
DatasetOption = st.sidebar.selectbox(
'Which Dataset the model was trained on?',
('OpenGPT', 'GPABenchmark', 'CHEAT'),
)
text = st.text_area('Enter text here (max 512 words)', '', height=300)
if st.button('Generate'):
# if ModelOption == 'RobertaSentinel':
# if DatasetOption == 'OpenGPT':
# result = RobertaSentinelOpenGPTInference(text)
# st.write("Model: RobertaSentinelOpenGPT")
# elif DatasetOption == 'CSAbstract':
# result = RobertaSentinelCSAbstractInference(text)
# st.write("Model: RobertaSentinelCSAbstract")
# if ModelOption == 'RobertaClassifier':
# if DatasetOption == 'OpenGPT':
# result = RobertaClassifierOpenGPTInference(text)
# st.write("Model: RobertaClassifierOpenGPT")
# elif DatasetOption == 'GPABenchmark':
# result = RobertaClassifierGPABenchmarkInference(text)
# st.write("Model: RobertaClassifierGPABenchmark")
# elif DatasetOption == 'CHEAT':
# result = RobertaClassifierCHEATInference(text)
# st.write("Model: RobertaClassifierCHEAT")
if DatasetOption == 'OpenGPT':
result = RobertaClassifierOpenGPTInference(text)
st.write("Model: RobertaClassifierOpenGPT")
elif DatasetOption == 'GPABenchmark':
result = RobertaClassifierGPABenchmarkInference(text)
st.write("Model: RobertaClassifierGPABenchmark")
elif DatasetOption == 'CHEAT':
result = RobertaClassifierCHEATInference(text)
st.write("Model: RobertaClassifierCHEAT")
Prediction = "Human Written" if not np.argmax(result) else "Machine Generated"
st.write(f"Prediction: {Prediction} ")
st.write(f"Probabilty:", max(result))
|