File size: 2,705 Bytes
51348d0
f87f969
bd0c703
 
f87f969
 
 
2fa9831
 
 
 
2bb8a76
f87f969
20cc32e
 
 
 
 
bd0c703
 
81ec3b4
2bb8a76
f87f969
 
 
7201227
f87f969
20cc32e
 
f87f969
2bb8a76
 
 
 
 
 
 
 
20cc32e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bb8a76
bd0c703
 
 
81ec3b4
 
 
57bafce
f87f969
 
 
 
 
51348d0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import streamlit as st
from transformers import pipeline
from ModelDriver import *
import numpy as np

# Add a title
st.title('GPT Detection Demo')
st.write("This is a demo for GPT detection. You can use this demo to test the model. There are 3 variations of the Roberta Classifier Model, The model was trained on CHEAT, GPABenchmark, OpenGPT datasets.You can choose dataset variation of the model on the sidebar.")
st.write("CHEAT        - Scientific Abstract Generated by GPT3.5")
st.write("GPABenchmark - Computer Science Abstract Generated by GPT3.5")
st.write("OpenGPT      - General News Article Generated by GPT3.5")
# st.write("Reference on how we built Roberta Sentinel: https://arxiv.org/abs/2305.07969")

# # Add 4 options for 4 models
# ModelOption = st.sidebar.selectbox(
#     'Which Model do you want to use?',
#     ('RobertaClassifier'),
# )

DatasetOption = st.sidebar.selectbox(
    'Which Dataset the model was trained on?',
    ('OpenGPT', 'GPABenchmark', 'CHEAT'),
)


text = st.text_area('Enter text here (max 512 words)', '', height=300)



if st.button('Generate'):
    # if ModelOption == 'RobertaSentinel':
    #     if DatasetOption == 'OpenGPT':
    #         result = RobertaSentinelOpenGPTInference(text)
    #         st.write("Model: RobertaSentinelOpenGPT")
    #     elif DatasetOption == 'CSAbstract':
    #         result = RobertaSentinelCSAbstractInference(text)
    #         st.write("Model: RobertaSentinelCSAbstract")

    # if ModelOption == 'RobertaClassifier':
    #     if DatasetOption == 'OpenGPT':
    #         result = RobertaClassifierOpenGPTInference(text)
    #         st.write("Model: RobertaClassifierOpenGPT")
    #     elif DatasetOption == 'GPABenchmark':
    #         result = RobertaClassifierGPABenchmarkInference(text)
    #         st.write("Model: RobertaClassifierGPABenchmark")
    #     elif DatasetOption == 'CHEAT':
    #         result = RobertaClassifierCHEATInference(text)
    #         st.write("Model: RobertaClassifierCHEAT")

    if DatasetOption == 'OpenGPT':
        result = RobertaClassifierOpenGPTInference(text)
        st.write("Model: RobertaClassifierOpenGPT")
    elif DatasetOption == 'GPABenchmark':
        result = RobertaClassifierGPABenchmarkInference(text)
        st.write("Model: RobertaClassifierGPABenchmark")
    elif DatasetOption == 'CHEAT':
        result = RobertaClassifierCHEATInference(text)
        st.write("Model: RobertaClassifierCHEAT")


    Prediction = "Human Written" if not np.argmax(result) else "Machine Generated"

    st.write(f"Prediction: {Prediction} ")
    st.write(f"Probabilty:", max(result))