File size: 5,406 Bytes
eb16c9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c017e96
eb16c9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c017e96
eb16c9f
 
 
 
 
 
 
c017e96
 
 
 
 
eb16c9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import os

os.environ.setdefault("HF_HOME", "/app/hf_cache")

import logging
from fastapi import FastAPI, Request
from fastapi.templating import Jinja2Templates
from pydantic import BaseModel
import torch
import torch.nn as nn
from transformers import AutoModel, AutoTokenizer
import uvicorn
from huggingface_hub import hf_hub_download


logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

app = FastAPI()
templates = Jinja2Templates(directory="templates")

HF_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
HF_REPO = "ThanhDT127/pho-bert-bilstm"
HF_FILE = "best_model_1.pth"

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
MODEL_DIR = "models"
os.makedirs(MODEL_DIR, exist_ok=True)
MODEL_PATH = os.path.join(MODEL_DIR, HF_FILE)


try:
    if not os.path.isfile(MODEL_PATH):
        logger.info("Downloading model from Hugging Face Hub")
        MODEL_PATH = hf_hub_download(
            repo_id=HF_REPO,
            filename=HF_FILE,
            cache_dir=os.environ["HF_HOME"],
            force_filename=HF_FILE,
            token=HF_TOKEN
        )
    logger.info("Loading model from %s", MODEL_PATH)
    model_state_dict = torch.load(MODEL_PATH, map_location=device)
    logger.info("Model loaded successfully")
except Exception as e:
    logger.error("Error loading model: %s", str(e))
    raise

class TextInput(BaseModel):
    text: str

class BertBiLSTMClassifier(nn.Module):
    def __init__(self, bert_model_name, num_emotion_classes, binary_cols, lstm_hidden_size=128, dropout=0.4):
        super().__init__()
        self.bert = AutoModel.from_pretrained(bert_model_name)
        self.lstm = nn.LSTM(
            input_size=self.bert.config.hidden_size,
            hidden_size=lstm_hidden_size,
            num_layers=1,
            batch_first=True,
            bidirectional=True
        )
        self.dropout = nn.Dropout(dropout)
        self.emotion_fc = nn.Linear(lstm_hidden_size * 2, num_emotion_classes)
        self.binary_fcs = nn.ModuleDict({
            col: nn.Linear(lstm_hidden_size * 2, 1)
            for col in binary_cols
        })

    def forward(self, input_ids, attention_mask):
        bert_out = self.bert(input_ids=input_ids, attention_mask=attention_mask)
        seq_out = bert_out.last_hidden_state
        lstm_out, _ = self.lstm(seq_out)
        last_hidden = lstm_out[:, -1, :]
        dropped = self.dropout(last_hidden)
        emo_logits = self.emotion_fc(dropped)
        bin_logits = {
            col: self.binary_fcs[col](dropped).squeeze(-1)
            for col in self.binary_fcs
        }
        return emo_logits, bin_logits

tokenizer = AutoTokenizer.from_pretrained(
    "vinai/phobert-base",
    use_fast=False,
    cache_dir=os.environ["HF_HOME"]
)
binary_cols = [
    'sản phẩm', 'giá cả', 'vận chuyển',
    'thái độ và dịch vụ khách hàng', 'khác'
]
model = BertBiLSTMClassifier(
    bert_model_name="vinai/phobert-base",
    num_emotion_classes=3,
    binary_cols=binary_cols,
    lstm_hidden_size=128
).to(device)

# Load model state dict
model.load_state_dict(model_state_dict)
model.eval()

threshold_dict = {
    'sản phẩm': 0.28,
    'giá cả': 0.58,
    'vận chuyển': 0.58,
    'thái độ và dịch vụ khách hàng': 0.70,
    'khác': 0.6
}

def predict(text: str):
    logger.info("Starting prediction for text: %s", text)
    try:
        enc = tokenizer(
            text, add_special_tokens=True, max_length=128,
            padding='max_length', truncation=True, return_tensors='pt'
        )
        input_ids = enc['input_ids'].to(device)
        attention_mask = enc['attention_mask'].to(device)
        with torch.no_grad():
            emo_logits, bin_logits = model(input_ids, attention_mask)
            emo_pred = torch.argmax(emo_logits, dim=1).item()
            bin_pred = {
                col: (torch.sigmoid(bin_logits[col]) > threshold_dict[col]).float().item()
                for col in binary_cols
            }
        emo_label = ['tiêu cực', 'trung tính', 'tích cực'][emo_pred]
        bin_labels = {col: ('có' if bin_pred[col] == 1 else 'không') for col in binary_cols}
        logger.info("Prediction completed: emotion=%s, binary=%s", emo_label, bin_labels)
        return emo_label, bin_labels
    except Exception as e:
        logger.error("Error during prediction: %s", str(e))
        raise

@app.get("/")
async def read_root(request: Request):
    logger.info("Received GET request for /")
    try:
        response = templates.TemplateResponse("index.html", {"request": request})
        logger.info("Successfully rendered index.html")
        return response
    except Exception as e:
        logger.error("Error rendering index.html: %s", str(e))
        raise

@app.post("/predict")
async def predict_text(input: TextInput):
    logger.info("Received POST request for /predict with input: %s", input.text)
    try:
        emotion, binary = predict(input.text)
        logger.info("Sending prediction response: emotion=%s, binary=%s", emotion, binary)
        return {"emotion": emotion, "binary": binary}
    except Exception as e:
        logger.error("Error in predict_text endpoint: %s", str(e))
        raise

if __name__ == "__main__":
    port = int(os.getenv("PORT", 8000))
    logger.info("Starting Uvicorn server on port %d", port)
    uvicorn.run("main:app", host="0.0.0.0", port=port)