File size: 74,095 Bytes
7e422c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 |
import os
import pandas as pd
import matplotlib.pyplot as plt
from datetime import datetime, timedelta
import requests
import json
import yfinance as yf
from crewai import Agent, Task, Crew, Process, LLM
from langchain_google_genai import ChatGoogleGenerativeAI
from dotenv import load_dotenv
import streamlit as st
from langfuse.client import Langfuse
import numpy as np
import random
from datetime import datetime, timedelta
import plotly.express as px
import plotly.graph_objects as go
# Load environment variables
load_dotenv()
# Setup API keys (replace with your actual keys)
ALPHAVANTAGE_API_KEY = os.getenv("ALPHAVANTAGE_API_KEY")
FMP_API_KEY = os.getenv("FMP_API_KEY")
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
LANGFUSE_SECRET_KEY = os.getenv("LANGFUSE_SECRET_KEY")
LANGFUSE_PUBLIC_KEY = os.getenv("LANGFUSE_PUBLIC_KEY")
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
# Initialize Langfuse for telemetry
langfuse = Langfuse(
secret_key=LANGFUSE_SECRET_KEY,
public_key=LANGFUSE_PUBLIC_KEY,
)
# Create a trace for the entire process
trace = langfuse.trace(
name="Stock Analysis System",
metadata={"timestamp": datetime.now().isoformat()}
)
# Initialize LLM
llm = LLM(
model="gemini/gemini-1.5-flash",
temperature=0.7
)
# Define the Data Collection Agent
data_collection_agent = Agent(
role="Data Collection Specialist",
goal="Gather comprehensive stock data from multiple financial APIs",
backstory="""You are a data specialist with extensive experience in financial markets.
Your expertise lies in collecting and organizing data from various financial sources.
You know how to query APIs efficiently and structure data for further analysis.""",
verbose=True,
allow_delegation=True,
llm=llm
)
# Define the Technical Analysis Agent
technical_analysis_agent = Agent(
role="Technical Analysis Expert",
goal="Perform in-depth technical analysis on stock data to identify patterns and trends",
backstory="""You are a seasoned technical analyst with years of experience in chart patterns,
technical indicators, and price action analysis. You can spot trends and reversals that
others might miss. Your analysis is rooted in statistical evidence and historical patterns.""",
verbose=True,
allow_delegation=False,
llm=llm
)
# Define the Fundamental Analysis Agent
fundamental_analysis_agent = Agent(
role="Fundamental Analysis Expert",
goal="Analyze company fundamentals, financial health, and news sentiment",
backstory="""You are a fundamental analyst with a background in accounting and finance.
You excel at dissecting financial statements, evaluating management effectiveness,
and understanding the competitive positioning of companies. You also track news sentiment
to gauge market perception.""",
verbose=True,
allow_delegation=False,
llm=llm
)
# Define the Risk Assessment Agent
risk_assessment_agent = Agent(
role="Risk Assessment Specialist",
goal="Evaluate risk profiles of potential investments based on volatility and market conditions",
backstory="""You are a risk management professional who has developed strategies for
major investment firms. You understand volatility, drawdowns, and correlation effects.
Your expertise helps in balancing reward potential with risk mitigation.""",
verbose=True,
allow_delegation=False,
llm=llm
)
# Define the Portfolio Recommendation Agent
portfolio_recommendation_agent = Agent(
role="Investment Advisor",
goal="Synthesize all analyses to recommend the top 5 investable stocks",
backstory="""You are a senior investment advisor who has guided high-net-worth clients
through multiple market cycles. You have a holistic view of the market and can weigh
different analytical perspectives to form a coherent investment strategy. You focus on
identifying the best opportunities with favorable risk-reward profiles.""",
verbose=True,
allow_delegation=True,
llm=llm
)
# Helper functions for API calls
def fetch_yahoo_finance_data(symbols, period="1mo"):
"""Fetch stock data from Yahoo Finance API"""
span = langfuse.span(
name="Yahoo Finance API Call",
parent_id=trace.id
)
try:
data = {}
for symbol in symbols:
stock = yf.Ticker(symbol)
hist = stock.history(period=period)
data[symbol] = {
"price_data": hist.to_dict(),
"info": stock.info
}
span.end(status="success")
return data
except Exception as e:
span.end(status="error", statusMessage=str(e))
return {"error": str(e)}
def fetch_alpha_vantage_data(symbol):
"""Fetch fundamental data from Alpha Vantage API"""
span = langfuse.span(
name="Alpha Vantage API Call",
parent_id=trace.id
)
try:
url = f"https://www.alphavantage.co/query?function=OVERVIEW&symbol={symbol}&apikey={ALPHAVANTAGE_API_KEY}"
response = requests.get(url)
data = response.json()
span.end(status="success")
return data
except Exception as e:
span.end(status="error", statusMessage=str(e))
return {"error": str(e)}
def fetch_fmp_data(symbol):
"""Fetch financial statements from Financial Modeling Prep API"""
span = langfuse.span(
name="Financial Modeling Prep API Call",
parent_id=trace.id
)
try:
url = f"https://financialmodelingprep.com/api/v3/income-statement/{symbol}?apikey={FMP_API_KEY}"
response = requests.get(url)
data = response.json()
span.end(status="success")
return data
except Exception as e:
span.end(status="error", statusMessage=str(e))
return {"error": str(e)}
def get_sp500_symbols():
"""Get a list of S&P 500 stocks"""
url = "https://en.wikipedia.org/wiki/List_of_S%26P_500_companies"
tables = pd.read_html(url)
df = tables[0]
return df['Symbol'].tolist()
# Define Tasks
# Task 1: Collect Data
collect_data_task = Task(
description="""
Collect comprehensive stock data for potential analysis. Follow these steps:
1. Get a list of the top 30 stocks by market cap in the S&P 500 index
2. For each stock, fetch data from:
- Yahoo Finance: price, volume, and basic info
- Alpha Vantage: company fundamentals
- Financial Modeling Prep: financial statements
3. Organize the data in a structured format for further analysis
4. Return a JSON with the collected data
Example stocks to include: AAPL, MSFT, AMZN, GOOGL, META
The data should include at minimum:
- Current and historical prices (1 month)
- Key financial metrics (P/E, EPS, dividend yield)
- Company overview
Your output should be detailed enough for technical and fundamental analysis.
""",
agent=data_collection_agent,
expected_output="""A detailed JSON containing structured data from all three APIs for at least 30 major stocks,
ready for analysis by other agents. Ensure it includes historical prices, key financial metrics,
and fundamental information."""
)
# Task 2: Technical Analysis
technical_analysis_task = Task(
description="""
Perform comprehensive technical analysis on the collected stock data. Your analysis should include:
1. Trend analysis using moving averages (50-day and 200-day)
2. Momentum indicators assessment (RSI, MACD)
3. Volume analysis and what it indicates about price movements
4. Support and resistance levels identification
5. Chart pattern recognition
For each stock, provide:
- Current trend direction (bullish, bearish, or sideways)
- Key technical indicators and their current readings
- Technical strength score (1-10)
- Potential price targets based on chart patterns
- Any warning signals or confirmation signals
Rank the stocks based on their technical strength and provide justification for your rankings.
Identify the top 10 stocks with the strongest technical setups.
""",
agent=technical_analysis_agent,
expected_output="""A detailed technical analysis report for each stock, including trend analysis,
indicator readings, support/resistance levels, and a final ranking of the top 10 stocks based on
technical strength with clear justification.""",
context=[collect_data_task]
)
# Task 3: Fundamental Analysis
fundamental_analysis_task = Task(
description="""
Analyze the fundamental health and outlook of each stock using the collected data. Your analysis should include:
1. Profitability metrics assessment (ROE, ROA, profit margins)
2. Valuation analysis (P/E, P/B, P/S ratios) relative to industry and historical averages
3. Growth prospects evaluation based on historical performance and forward guidance
4. Balance sheet strength and debt levels
5. Dividend policy and sustainability
6. Recent news sentiment and its impact on future prospects
For each stock, provide:
- Overall fundamental health grade (A to F)
- Key strengths and weaknesses
- Valuation assessment (undervalued, fairly valued, overvalued)
- Growth outlook (poor, moderate, strong)
- Recent news sentiment summary
Rank the stocks based on their fundamental attractiveness and provide justification for your rankings.
Identify the top 10 stocks with the strongest fundamentals.
""",
agent=fundamental_analysis_agent,
expected_output="""A comprehensive fundamental analysis for each stock, including profitability,
valuation, growth prospects, balance sheet analysis, and a final ranking of the top 10 stocks based
on fundamental strength with clear justification.""",
context=[collect_data_task]
)
# Task 4: Risk Assessment
risk_assessment_task = Task(
description="""
Evaluate the risk profile of each stock based on quantitative and qualitative factors. Your assessment should include:
1. Volatility analysis (Beta, standard deviation of returns)
2. Drawdown analysis (maximum historical drawdowns)
3. Liquidity assessment (trading volume, bid-ask spreads)
4. Industry and macroeconomic risk factors
5. Company-specific risks (competition, regulatory, litigation)
For each stock, provide:
- Overall risk score (1-10, where 1 is lowest risk and 10 is highest)
- Volatility metrics and what they indicate
- Maximum drawdown potential in different market scenarios
- Key risk factors specific to the company
- Risk mitigation recommendations
Rank the stocks based on their risk-adjusted return potential and provide justification for your rankings.
Identify the 10 stocks with the most favorable risk-reward profiles.
""",
agent=risk_assessment_agent,
expected_output="""A detailed risk assessment for each stock, including volatility metrics,
drawdown analysis, liquidity assessment, key risk factors, and a final ranking of the top 10 stocks
with the most favorable risk-reward profiles.""",
context=[collect_data_task, technical_analysis_task, fundamental_analysis_task]
)
# Task 5: Final Portfolio Recommendation
portfolio_recommendation_task = Task(
description="""
Synthesize all previous analyses to identify the top 5 investable stocks in the US market for today.
Your recommendation should:
1. Integrate technical, fundamental, and risk analyses
2. Consider current market conditions and sector trends
3. Balance growth potential with risk mitigation
4. Include near-term catalysts and potential headwinds
For each recommended stock, provide:
- A comprehensive investment thesis
- Why it ranks in the top 5
- Key metrics that support the recommendation
- Suggested position sizing based on risk profile
- Potential entry points and price targets
- Recommended holding period
Your final output should be a professional investment recommendation report that could be presented to clients.
""",
agent=portfolio_recommendation_agent,
expected_output="""A professional investment recommendation report identifying the top 5 investable
stocks with comprehensive justification, supported by technical, fundamental, and risk analyses.
Include specific entry points, price targets, and holding periods.""",
context=[technical_analysis_task, fundamental_analysis_task, risk_assessment_task]
)
# Create the Crew
stock_analysis_crew = Crew(
agents=[
data_collection_agent,
technical_analysis_agent,
fundamental_analysis_agent,
risk_assessment_agent,
portfolio_recommendation_agent
],
tasks=[
collect_data_task,
technical_analysis_task,
fundamental_analysis_task,
risk_assessment_task,
portfolio_recommendation_task
],
verbose=True,
process=Process.sequential
)
# Streamlit UI
def main():
st.set_page_config(
page_title="Multi-Agent Stock Analysis System",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS for better styling
st.markdown("""
<style>
.main-header {
font-size: 2.5rem;
font-weight: 700;
margin-bottom: 1rem;
}
.sub-header {
font-size: 1.8rem;
font-weight: 600;
margin-top: 2rem;
margin-bottom: 1rem;
}
.card {
padding: 1.5rem;
border-radius: 0.5rem;
background-color: #f8f9fa;
margin-bottom: 1rem;
}
.metric-value {
font-size: 1.8rem;
font-weight: 700;
}
.metric-label {
font-size: 1rem;
color: #6c757d;
}
</style>
""", unsafe_allow_html=True)
# Header section
col1, col2 = st.columns([5, 1])
with col1:
st.markdown('<div class="main-header">Multi-Agent Stock Analysis System</div>', unsafe_allow_html=True)
st.markdown("Powered by CrewAI and Google Gemini 1.5")
with col2:
st.image("https://img.icons8.com/color/96/000000/stocks.png", width=80)
st.markdown("---")
# Sidebar configuration
with st.sidebar:
st.header("Analysis Configuration")
# Date range selection
st.subheader("Time Period")
date_range = st.selectbox(
"Select historical data timeframe:",
["1 Month", "3 Months", "6 Months", "1 Year", "5 Years"],
index=0
)
period_mapping = {
"1 Month": "1mo",
"3 Months": "3mo",
"6 Months": "6mo",
"1 Year": "1y",
"5 Years": "5y"
}
selected_period = period_mapping[date_range]
# Stock filtering options
st.subheader("Stock Filters")
market_cap_filter = st.multiselect(
"Market Cap Range:",
["Mega Cap (>$200B)", "Large Cap ($10B-$200B)", "Mid Cap ($2B-$10B)", "Small Cap (<$2B)"],
default=["Mega Cap (>$200B)", "Large Cap ($10B-$200B)"]
)
sector_filter = st.multiselect(
"Sectors:",
["Technology", "Healthcare", "Consumer Cyclical", "Financial Services",
"Communication Services", "Industrials", "Consumer Defensive", "Energy",
"Basic Materials", "Real Estate", "Utilities"],
default=["Technology", "Healthcare", "Financial Services"]
)
# Analysis weights
st.subheader("Analysis Weights")
technical_weight = st.slider("Technical Analysis Weight", 0, 100, 33)
fundamental_weight = st.slider("Fundamental Analysis Weight", 0, 100, 33)
risk_weight = st.slider("Risk Assessment Weight", 0, 100, 34)
# Normalize weights to sum to 100
total_weight = technical_weight + fundamental_weight + risk_weight
if total_weight > 0:
technical_weight = int((technical_weight / total_weight) * 100)
fundamental_weight = int((fundamental_weight / total_weight) * 100)
risk_weight = 100 - technical_weight - fundamental_weight
st.caption(f"Weights: Technical ({technical_weight}%), Fundamental ({fundamental_weight}%), Risk ({risk_weight}%)")
# Run analysis button
st.header("System Control")
run_button = st.button("Run Full Analysis", type="primary")
# Additional options
export_format = st.selectbox(
"Export Results Format:",
["PDF Report", "Excel Spreadsheet", "JSON Data", "CSV Data"]
)
st.download_button(
label="Download Results",
data="", # This would be filled with actual data
file_name="stock_analysis_results.pdf",
disabled=not 'result' in st.session_state,
help="Run analysis first to enable download"
)
# About section
st.markdown("---")
st.header("About")
st.write("""
This multi-agent system uses 5 specialized agents to analyze stock market data
and identify the top 5 investable stocks based on your preferences. The system integrates
data from Yahoo Finance, Alpha Vantage, and Financial Modeling Prep APIs.
""")
st.caption("Β© 2025 Stock AI Analysis | Version 1.0.2")
# If the run button is clicked or we have existing results
if run_button:
with st.spinner("Agents are working on your analysis..."):
# Execute the crew with the selected period
# In practice, you would pass these parameters to your crew
analysis_params = {
"period": selected_period,
"market_cap_filter": market_cap_filter,
"sector_filter": sector_filter,
"weights": {
"technical": technical_weight / 100,
"fundamental": fundamental_weight / 100,
"risk": risk_weight / 100
}
}
# For demonstration, we'll simulate a delay
import time
progress_bar = st.progress(0)
status_text = st.empty()
# Simulate the analysis progress
steps = ["Collecting market data...",
"Performing technical analysis...",
"Analyzing fundamentals...",
"Assessing risks...",
"Generating final recommendations..."]
for i, step in enumerate(steps):
progress_bar.progress((i) / len(steps))
status_text.text(step)
time.sleep(0.5) # Simulate processing time
progress_bar.progress(1.0)
status_text.text("Analysis complete!")
time.sleep(0.5)
status_text.empty()
progress_bar.empty()
# In a real implementation, you'd run the actual analysis:
# result = stock_analysis_crew.kickoff(parameters=analysis_params)
# For demonstration, we'll create mock results
from datetime import datetime
mock_result = {
"top_stocks": [
{"symbol": "AAPL", "name": "Apple Inc.", "technical_score": 8.7, "fundamental_score": 9.1, "risk_score": 3.2,
"composite_score": 8.9, "recommendation": "Strong Buy", "target_price": 230.45},
{"symbol": "MSFT", "name": "Microsoft Corp.", "technical_score": 9.2, "fundamental_score": 8.9, "risk_score": 2.8,
"composite_score": 8.8, "recommendation": "Strong Buy", "target_price": 428.50},
{"symbol": "GOOGL", "name": "Alphabet Inc.", "technical_score": 8.5, "fundamental_score": 8.7, "risk_score": 3.4,
"composite_score": 8.3, "recommendation": "Buy", "target_price": 187.75},
{"symbol": "NVDA", "name": "NVIDIA Corp.", "technical_score": 9.4, "fundamental_score": 8.2, "risk_score": 4.6,
"composite_score": 8.0, "recommendation": "Buy", "target_price": 950.20},
{"symbol": "AMZN", "name": "Amazon.com Inc.", "technical_score": 7.9, "fundamental_score": 8.5, "risk_score": 3.8,
"composite_score": 7.8, "recommendation": "Buy", "target_price": 196.30}
],
"analysis_date": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"market_outlook": "Cautiously bullish with potential volatility due to upcoming economic data.",
"sector_performance": {
"Technology": 12.4,
"Healthcare": 8.7,
"Financial Services": 6.5,
"Consumer Cyclical": 5.2,
"Communication Services": 7.8,
"Industrials": 4.3,
"Energy": -2.1,
"Consumer Defensive": 3.2,
"Real Estate": -1.5,
"Utilities": 1.8,
"Basic Materials": 2.4
}
}
# Save result to session state
st.session_state.result = mock_result
# Display results if available
if 'result' in st.session_state:
result = st.session_state.result
# Top recommendations section
st.markdown('<div class="sub-header">Top 5 Investable Stocks</div>', unsafe_allow_html=True)
st.write(f"Analysis completed on: {result['analysis_date']}")
# Market outlook card
st.markdown(f"""
<div class="card">
<h3>Market Outlook</h3>
<p>{result['market_outlook']}</p>
</div>
""", unsafe_allow_html=True)
# Create top stocks table with visual indicators
top_stocks_df = pd.DataFrame(result["top_stocks"])
# Create styled dataframe
def color_scores(val):
if isinstance(val, float):
if val >= 8.5:
return f'background-color: rgba(76, 175, 80, 0.2); color: #1e5631; font-weight: bold'
elif val >= 7.0:
return f'background-color: rgba(255, 235, 59, 0.2); color: #8c6d1f'
elif val <= 4.0 and 'risk' in col.lower(): # Low risk is good
return f'background-color: rgba(76, 175, 80, 0.2); color: #1e5631; font-weight: bold'
elif val >= 5.0 and 'risk' in col.lower(): # High risk is bad
return f'background-color: rgba(244, 67, 54, 0.2); color: #a52121'
return ''
styled_df = top_stocks_df.style.applymap(color_scores)
# Display stock cards in columns
st.subheader("Top Stock Recommendations")
cols = st.columns(5)
for i, stock in enumerate(result["top_stocks"]):
with cols[i]:
st.markdown(f"""
<div style="border-radius: 10px; border: 1px solid #ddd; padding: 16px; height: 100%;">
<h3 style="margin-top: 0;">{stock['symbol']}</h3>
<p style="color: #666; font-size: 0.9rem; margin-bottom: 15px;">{stock['name']}</p>
<div style="display: flex; justify-content: space-between; margin-bottom: 10px;">
<span style="font-weight: bold; color: {'#4CAF50' if stock['recommendation'] == 'Strong Buy' else '#FFC107'}">
{stock['recommendation']}
</span>
<span style="font-weight: bold;">${stock['target_price']}</span>
</div>
<hr style="margin: 10px 0;">
<div style="margin-bottom: 5px;">
<span style="font-size: 0.8rem; color: #666;">TECHNICAL</span>
<div style="background-color: #eee; border-radius: 5px; height: 8px; margin-top: 3px;">
<div style="background-color: #4CAF50; width: {stock['technical_score']*10}%; height: 100%; border-radius: 5px;"></div>
</div>
</div>
<div style="margin-bottom: 5px;">
<span style="font-size: 0.8rem; color: #666;">FUNDAMENTAL</span>
<div style="background-color: #eee; border-radius: 5px; height: 8px; margin-top: 3px;">
<div style="background-color: #2196F3; width: {stock['fundamental_score']*10}%; height: 100%; border-radius: 5px;"></div>
</div>
</div>
<div style="margin-bottom: 5px;">
<span style="font-size: 0.8rem; color: #666;">RISK (LOWER IS BETTER)</span>
<div style="background-color: #eee; border-radius: 5px; height: 8px; margin-top: 3px;">
<div style="background-color: {'#F44336' if stock['risk_score'] > 5 else '#4CAF50'}; width: {stock['risk_score']*10}%; height: 100%; border-radius: 5px;"></div>
</div>
</div>
</div>
""", unsafe_allow_html=True)
# Performance visualization section
st.markdown('<div class="sub-header">Performance Analysis</div>', unsafe_allow_html=True)
# Tabs for different visualizations
tabs = st.tabs(['Stock Comparison', 'Technical Analysis', 'Fundamental Metrics', 'Risk Assessment', 'Sector Performance'])
with tabs[0]:
# Create columns
col1, col2 = st.columns([3, 2])
with col1:
# Radar chart for multi-dimensional comparison
st.subheader("Multi-factor Comparison")
# Sample data for radar chart
radar_data = {
'Metric': ['Technical Score', 'Fundamental Score', 'Growth Potential', 'Value Rating', 'Momentum'],
}
for stock in result["top_stocks"]:
# Simulate different metrics for variety
radar_data[stock['symbol']] = [
stock['technical_score'],
stock['fundamental_score'],
7.5 + random.uniform(-1.5, 1.5), # Simulated growth potential
8.0 + random.uniform(-2.0, 1.0), # Simulated value rating
7.2 + random.uniform(-1.0, 2.0) # Simulated momentum
]
radar_df = pd.DataFrame(radar_data)
# Plot radar chart using Plotly
fig = go.Figure()
for stock in result["top_stocks"]:
fig.add_trace(go.Scatterpolar(
r=radar_df[stock['symbol']],
theta=radar_df['Metric'],
fill='toself',
name=stock['symbol']
))
fig.update_layout(
polar=dict(
radialaxis=dict(
visible=True,
range=[0, 10]
)),
showlegend=True,
height=450
)
st.plotly_chart(fig, use_container_width=True)
with col2:
# Composite score comparison
st.subheader("Composite Score Rankings")
# Create dataframe for bar chart
composite_df = pd.DataFrame([
{'Stock': stock['symbol'], 'Score': stock['composite_score']}
for stock in result["top_stocks"]
])
# Sort by score
composite_df = composite_df.sort_values('Score', ascending=False)
# Create the bar chart with Plotly
fig = px.bar(
composite_df,
x='Stock',
y='Score',
color='Score',
color_continuous_scale='Viridis',
text='Score'
)
fig.update_traces(texttemplate='%{text:.1f}', textposition='outside')
fig.update_layout(uniformtext_minsize=8, uniformtext_mode='hide')
fig.update_layout(height=400)
st.plotly_chart(fig, use_container_width=True)
with tabs[1]:
st.subheader("Technical Analysis Insights")
# Create columns
col1, col2 = st.columns([1, 1])
with col1:
# Example of price chart with technical indicators
st.markdown("### AAPL - Price Chart with Technical Indicators")
# In a real implementation, you would use actual price data
# Here, we'll generate synthetic data for visualization
date_range = pd.date_range(end=pd.Timestamp.today(), periods=90)
base_price = 180
price_data = [base_price]
# Generate synthetic price movement
for i in range(1, 90):
change = price_data[-1] * np.random.normal(0.0005, 0.012)
price_data.append(price_data[-1] + change)
# Create dataframe
tech_df = pd.DataFrame({
'Date': date_range,
'Close': price_data
})
# Calculate MA
tech_df['MA_50'] = tech_df['Close'].rolling(window=20).mean()
tech_df['MA_200'] = tech_df['Close'].rolling(window=50).mean()
# Create Plotly figure
fig = go.Figure()
# Add price line
fig.add_trace(go.Scatter(
x=tech_df['Date'],
y=tech_df['Close'],
mode='lines',
name='AAPL Price',
line=dict(color='#1E88E5', width=2)
))
# Add moving averages
fig.add_trace(go.Scatter(
x=tech_df['Date'],
y=tech_df['MA_50'],
mode='lines',
name='50-day MA',
line=dict(color='#FFA000', width=1.5)
))
fig.add_trace(go.Scatter(
x=tech_df['Date'],
y=tech_df['MA_200'],
mode='lines',
name='200-day MA',
line=dict(color='#D81B60', width=1.5)
))
# Update layout
fig.update_layout(
title='AAPL Price with Moving Averages',
xaxis_title='Date',
yaxis_title='Price (USD)',
legend=dict(x=0, y=1, traceorder='normal'),
height=400
)
st.plotly_chart(fig, use_container_width=True)
with col2:
# Example of technical indicators comparison
st.markdown("### Technical Indicators Comparison")
# Create dataframe for tech indicators
tech_indicators = pd.DataFrame({
'Stock': [stock['symbol'] for stock in result["top_stocks"]],
'RSI': [60.2, 52.7, 58.1, 67.3, 49.8], # Example values
'MACD': [1.2, 0.8, -0.3, 2.1, 0.5], # Example values
'Bollinger': [1.2, 0.7, 0.9, 1.5, 0.3], # Example values
'ADX': [28.3, 22.1, 19.8, 32.5, 21.3] # Example values
})
fig = px.parallel_coordinates(
tech_indicators,
color="RSI",
labels={"Stock": "Stock Ticker",
"RSI": "RSI (14)",
"MACD": "MACD Signal",
"Bollinger": "Bollinger Position",
"ADX": "ADX (14)"},
color_continuous_scale=px.colors.sequential.Viridis,
color_continuous_midpoint=50
)
fig.update_layout(height=400)
st.plotly_chart(fig, use_container_width=True)
# Technical metrics explanation
with st.expander("Technical Indicators Explained"):
st.markdown("""
- **RSI (Relative Strength Index)**: Measures momentum, with values over 70 indicating overbought conditions and under 30 indicating oversold conditions.
- **MACD (Moving Average Convergence Divergence)**: Shows the relationship between two moving averages, with positive values indicating bullish momentum.
- **Bollinger Position**: Where price is within Bollinger Bands, with values near 1 indicating price near upper band.
- **ADX (Average Directional Index)**: Measures trend strength, with values over 25 indicating a strong trend.
""")
with tabs[2]:
st.subheader("Fundamental Analysis Insights")
# Create columns
col1, col2 = st.columns([1, 1])
with col1:
# Valuation metrics comparison
st.markdown("### Valuation Metrics")
# Create dataframe for valuation metrics
valuation_df = pd.DataFrame({
'Stock': [stock['symbol'] for stock in result["top_stocks"]],
'P/E Ratio': [28.5, 35.2, 25.7, 42.8, 30.1], # Example values
'EV/EBITDA': [18.2, 22.1, 16.8, 28.3, 19.5], # Example values
'P/S Ratio': [7.2, 12.8, 6.5, 14.2, 3.8], # Example values
'P/B Ratio': [12.5, 15.3, 5.8, 20.1, 9.2] # Example values
})
# Melt the dataframe for easier plotting
valuation_melted = pd.melt(
valuation_df,
id_vars=['Stock'],
var_name='Metric',
value_name='Value'
)
# Create the grouped bar chart
fig = px.bar(
valuation_melted,
x='Stock',
y='Value',
color='Metric',
barmode='group',
title='Valuation Metrics Comparison'
)
fig.update_layout(height=400)
st.plotly_chart(fig, use_container_width=True)
with col2:
# Growth metrics
st.markdown("### Growth Metrics (YoY %)")
# Create dataframe for growth metrics
growth_df = pd.DataFrame({
'Stock': [stock['symbol'] for stock in result["top_stocks"]],
'Revenue Growth': [12.5, 18.2, 15.7, 25.8, 20.1], # Example values
'EPS Growth': [15.2, 22.1, 12.8, 32.3, 19.5], # Example values
'Dividend Growth': [5.2, 8.8, 3.5, 0.0, 2.8], # Example values
'FCF Growth': [10.5, 15.3, 9.8, 20.1, 12.2] # Example values
})
# Melt the dataframe for easier plotting
growth_melted = pd.melt(
growth_df,
id_vars=['Stock'],
var_name='Metric',
value_name='Growth (%)'
)
# Create the grouped bar chart
fig = px.bar(
growth_melted,
x='Stock',
y='Growth (%)',
color='Metric',
barmode='group',
title='Year-over-Year Growth Metrics'
)
fig.update_layout(height=400)
st.plotly_chart(fig, use_container_width=True)
# Financial health metrics
st.markdown("### Financial Health Overview")
# Create columns for metrics
metric_cols = st.columns(5)
# Sample financial health data for each stock
financial_health = [
{"Debt/Equity": 0.42, "Current Ratio": 2.1, "ROE": 35.2, "Profit Margin": 25.3, "Dividend Yield": 0.8},
{"Debt/Equity": 0.15, "Current Ratio": 2.7, "ROE": 42.8, "Profit Margin": 33.5, "Dividend Yield": 1.2},
{"Debt/Equity": 0.28, "Current Ratio": 1.9, "ROE": 30.1, "Profit Margin": 22.7, "Dividend Yield": 0.6},
{"Debt/Equity": 0.08, "Current Ratio": 3.2, "ROE": 52.3, "Profit Margin": 30.2, "Dividend Yield": 0.2},
{"Debt/Equity": 0.35, "Current Ratio": 2.5, "ROE": 33.8, "Profit Margin": 20.1, "Dividend Yield": 1.0}
]
for i, stock in enumerate(result["top_stocks"]):
health = financial_health[i]
with metric_cols[i]:
st.markdown(f"**{stock['symbol']}**")
# Use delta indicators to show good/bad metrics
st.metric("Debt/Equity", f"{health['Debt/Equity']:.2f}",
delta="-0.05" if health['Debt/Equity'] < 0.3 else "0.03",
delta_color="normal")
st.metric("Current Ratio", f"{health['Current Ratio']:.1f}",
delta="0.2" if health['Current Ratio'] > 2.0 else "-0.1",
delta_color="normal")
st.metric("ROE %", f"{health['ROE']:.1f}%",
delta="3.2%" if health['ROE'] > 30 else "-1.5%",
delta_color="normal")
st.metric("Profit Margin %", f"{health['Profit Margin']:.1f}%",
delta="1.8%" if health['Profit Margin'] > 25 else "-0.7%",
delta_color="normal")
st.metric("Dividend Yield %", f"{health['Dividend Yield']:.1f}%",
delta="0.1%" if health['Dividend Yield'] > 0.5 else "0%",
delta_color="normal")
with tabs[3]:
st.subheader("Risk Assessment Insights")
# Create columns
col1, col2 = st.columns([1, 1])
with col1:
# Volatility comparison
st.markdown("### Volatility Metrics")
# Risk metrics data
risk_df = pd.DataFrame({
'Stock': [stock['symbol'] for stock in result["top_stocks"]],
'Beta': [1.15, 0.95, 1.08, 1.42, 1.23], # Example values
'Vol (30D)': [25.2, 18.7, 22.3, 35.2, 28.1], # Example values
'Vol (90D)': [22.5, 16.8, 20.5, 32.7, 26.3], # Example values
'Max Drawdown': [18.5, 12.3, 15.7, 25.2, 20.1] # Example values
})
# Create scatter plot
fig = px.scatter(
risk_df,
x='Beta',
y='Vol (30D)',
size='Max Drawdown',
color='Stock',
hover_name='Stock',
size_max=25,
title='Risk Profile: Beta vs Volatility'
)
fig.update_layout(
xaxis_title='Beta (vs S&P 500)',
yaxis_title='30-Day Volatility (%)',
height=400
)
st.plotly_chart(fig, use_container_width=True)
with col2:
# Risk-reward scatter
st.markdown("### Risk-Reward Analysis")
# Risk-reward data
risk_reward_df = pd.DataFrame({
'Stock': [stock['symbol'] for stock in result["top_stocks"]],
'Expected Return (%)': [12.5, 15.2, 11.7, 18.3, 13.5], # Example values
'Risk Score': [s['risk_score'] for s in result["top_stocks"]],
'Sharpe Ratio': [1.8, 2.2, 1.5, 1.2, 1.7] # Example values
})
# Create scatter plot
fig = px.scatter(
risk_reward_df,
x='Risk Score',
y='Expected Return (%)',
size='Sharpe Ratio',
color='Stock',
hover_name='Stock',
size_max=25,
title='Risk-Reward Analysis'
)
fig.update_layout(
xaxis_title='Risk Score (Lower is Better)',
yaxis_title='Expected Annual Return (%)',
height=400
)
st.plotly_chart(fig, use_container_width=True)
# Risk breakdown table
st.markdown("### Detailed Risk Breakdown")
# Risk breakdown data
risk_breakdown = pd.DataFrame({
'Stock': [stock['symbol'] for stock in result["top_stocks"]],
'Market Risk': ['Medium', 'Low', 'Medium', 'High', 'Medium'],
'Sector Risk': ['Medium', 'Low', 'Low', 'High', 'Medium'],
'Company Risk': ['Low', 'Low', 'Medium', 'Medium', 'Medium'],
'Liquidity Risk': ['Low', 'Low', 'Low', 'Medium', 'Low'],
'Volatility': ['Medium', 'Low', 'Medium', 'High', 'Medium'],
'Correlation w/Market': ['High', 'Medium', 'High', 'High', 'High']
})
# Style the dataframe
def highlight_risk(val):
if val == 'High':
return 'background-color: rgba(244, 67, 54, 0.2); color: #a52121'
elif val == 'Low':
return 'background-color: rgba(76, 175, 80, 0.2); color: #1e5631'
return 'background-color: rgba(255, 235, 59, 0.2); color: #8c6d1f'
styled_risk = risk_breakdown.style.applymap(highlight_risk, subset=[
'Market Risk', 'Sector Risk', 'Company Risk', 'Liquidity Risk',
'Volatility', 'Correlation w/Market'
])
st.dataframe(styled_risk, use_container_width=True)
# Risk explanation
with st.expander("Risk Metrics Explained"):
st.markdown("""
- **Beta**: Measures volatility relative to the overall market. A beta > 1 indicates higher volatility than the market.
- **Volatility (Vol)**: Standard deviation of returns, indicating price fluctuation magnitude.
- **Max Drawdown**: Largest percentage drop from peak to trough, indicating worst-case historical loss.
- **Sharpe Ratio**: Risk-adjusted return metric. Higher values indicate better risk-adjusted performance.
- **Market Risk**: Risk related to overall market movements affecting the stock.
- **Sector Risk**: Risk related to the specific industry sector's performance.
- **Company Risk**: Risk specific to the company's operations, management, and financials.
- **Liquidity Risk**: Risk related to how easily shares can be bought or sold without affecting price.
""")
with tabs[4]:
st.subheader("Sector Performance")
# Sector performance data
sector_df = pd.DataFrame({
'Sector': list(result['sector_performance'].keys()),
'Performance (%)': list(result['sector_performance'].values())
})
# Sort by performance
sector_df = sector_df.sort_values('Performance (%)', ascending=False)
# Create columns
col1, col2 = st.columns([3, 2])
with col1:
# Create a horizontal bar chart
fig = px.bar(
sector_df,
y='Sector',
x='Performance (%)',
orientation='h',
color='Performance (%)',
color_continuous_scale='RdBu',
color_continuous_midpoint=0,
title='Sector Performance (YTD)',
text='Performance (%)'
)
fig.update_traces(texttemplate='%{text:.1f}%', textposition='outside')
fig.update_layout(height=500)
st.plotly_chart(fig, use_container_width=True)
with col2:
# Sector allocation of recommended stocks
st.markdown("### Recommended Portfolio Sector Allocation")
# Sample sector allocation data
sector_allocation = {
'Technology': 60,
'Consumer Cyclical': 20,
'Communication Services': 20
}
# Create pie chart
fig = px.pie(
names=list(sector_allocation.keys()),
values=list(sector_allocation.values()),
title='Sector Allocation',
hole=0.4
)
fig.update_traces(textposition='inside', textinfo='percent+label')
fig.update_layout(height=400)
st.plotly_chart(fig, use_container_width=True)
# Sector outlook
st.markdown("### Sector Outlook")
st.markdown("""
- **Technology**: Strong outlook driven by AI adoption and cloud growth
- **Consumer Cyclical**: Moderate outlook with potential pressure from interest rates
- **Communication Services**: Positive outlook with increasing digital ad spending
""")
# Detailed analysis and recommendations section
st.markdown('<div class="sub-header">Detailed Analysis & Recommendations</div>', unsafe_allow_html=True)
# Create an expander for each stock
for stock in result["top_stocks"]:
with st.expander(f"{stock['symbol']} - {stock['name']} | {stock['recommendation']}"):
# Create tabs within the expander
stock_tabs = st.tabs(['Investment Thesis', 'Technical Analysis', 'Fundamental Analysis', 'Risk Assessment'])
with stock_tabs[0]:
st.markdown(f"### Investment Thesis for {stock['symbol']}")
st.markdown(f"""
**Target Price:** ${stock['target_price']} ({"+" if stock['target_price'] > 200 else ""}{((stock['target_price']/200)-1)*100:.1f}% upside)
**Recommendation:** {stock['recommendation']}
**Time Horizon:** 12-18 months
**Thesis Summary:**
{stock['name']} presents a compelling investment opportunity based on its strong technical momentum, solid fundamental growth metrics, and reasonable risk profile. The company is well-positioned to benefit from ongoing digital transformation trends and expanding profit margins.
**Key Catalysts:**
- Continued expansion in service revenue streams
- Margin improvement from supply chain optimization
- New product launches expected in Q3 2025
- Potential for increased shareholder returns via buybacks
**Position Sizing:**
Recommended position size of 4-6% in a diversified portfolio, with potential to add on pullbacks to key support levels.
""")
with stock_tabs[1]:
st.markdown(f"### Technical Analysis for {stock['symbol']}")
# Technical metrics with visual indicators
st.markdown("#### Technical Indicators")
# Create columns for technical metrics
tech_cols = st.columns(5)
# Sample technical metrics
tech_metrics = [
{"label": "Trend", "value": "Bullish", "detail": "Above major MAs"},
{"label": "RSI(14)", "value": "62.3", "detail": "Positive momentum"},
{"label": "MACD", "value": "Positive", "detail": "Recent crossover"},
{"label": "Vol Trend", "value": "Increasing", "detail": "Above average"},
{"label": "Pattern", "value": "Cup & Handle", "detail": "Bullish formation"}
]
for i, metric in enumerate(tech_metrics):
with tech_cols[i]:
st.markdown(f"""
<div style="text-align: center; padding: 10px; border: 1px solid #ddd; border-radius: 5px;">
<div style="font-size: 0.9rem; color: #666;">{metric['label']}</div>
<div style="font-size: 1.3rem; font-weight: bold; margin: 5px 0;">{metric['value']}</div>
<div style="font-size: 0.8rem; color: #666;">{metric['detail']}</div>
</div>
""", unsafe_allow_html=True)
# Technical analysis summary
st.markdown("""
#### Technical Analysis Summary
The stock is displaying strong bullish momentum with prices trading above both the 50-day and 200-day moving averages. Recent price action has formed a cup and handle pattern, suggesting potential for further upside movement. Volume has been increasing on up days, confirming the bullish bias.
**Support Levels:**
- Primary: $192.50 (50-day MA)
- Secondary: $187.80 (previous resistance turned support)
- Tertiary: $180.00 (psychological level)
**Resistance Levels:**
- Primary: $212.75 (recent high)
- Secondary: $225.00 (psychological level)
- Tertiary: $231.25 (all-time high)
**Entry Strategy:**
Consider entering on pullbacks to the $192-195 range with a stop loss below $187.
""")
with stock_tabs[2]:
st.markdown(f"### Fundamental Analysis for {stock['symbol']}")
# Create columns
fund_col1, fund_col2 = st.columns([1, 1])
with fund_col1:
# Financial metrics table
st.markdown("#### Key Financial Metrics")
# Sample financial metrics
financials = {
"Metric": ["Revenue (TTM)", "Revenue Growth (YoY)", "EPS (TTM)", "EPS Growth (YoY)", "Profit Margin", "Operating Margin", "ROE", "ROA", "ROIC", "Debt/Equity"],
"Value": ["$394.2B", "15.2%", "$6.42", "18.7%", "25.3%", "32.1%", "35.2%", "18.7%", "27.5%", "0.42"],
"Industry Avg": ["$215.7B", "12.5%", "$3.85", "10.2%", "19.8%", "25.3%", "28.7%", "15.2%", "21.3%", "0.55"]
}
financials_df = pd.DataFrame(financials)
# Function to highlight where company is better than industry
def highlight_better(row):
# For metrics where higher is better
higher_better = ["Revenue (TTM)", "Revenue Growth (YoY)", "EPS (TTM)", "EPS Growth (YoY)",
"Profit Margin", "Operating Margin", "ROE", "ROA", "ROIC"]
# For metrics where lower is better
lower_better = ["Debt/Equity"]
if row.name not in [0, 1]: # Skip header rows
metric = row["Metric"]
# Extract numeric values for comparison
try:
# Remove non-numeric characters and convert to float
val_str = row["Value"].replace('$', '').replace('B', '').replace('%', '')
avg_str = row["Industry Avg"].replace('$', '').replace('B', '').replace('%', '')
val = float(val_str)
avg = float(avg_str)
if metric in higher_better and val > avg:
return ['', 'background-color: rgba(76, 175, 80, 0.2)', '']
elif metric in lower_better and val < avg:
return ['', 'background-color: rgba(76, 175, 80, 0.2)', '']
except:
pass
return ['', '', '']
st.dataframe(financials_df.style.apply(highlight_better, axis=1), use_container_width=True)
with fund_col2:
# Valuation metrics table
st.markdown("#### Valuation Metrics")
# Sample valuation metrics
valuation = {
"Metric": ["P/E Ratio", "Forward P/E", "PEG Ratio", "P/S Ratio", "P/B Ratio", "EV/EBITDA", "EV/Revenue", "Dividend Yield", "FCF Yield", "Earnings Yield"],
"Value": ["28.5", "24.2", "1.52", "7.2", "12.5", "18.2", "6.8", "0.8%", "3.2%", "3.5%"],
"5Y Average": ["32.7", "27.5", "1.75", "8.4", "14.2", "20.1", "7.5", "0.7%", "2.8%", "3.1%"]
}
valuation_df = pd.DataFrame(valuation)
# Function to highlight where current is better than 5Y avg
def highlight_better_valuation(row):
# For metrics where lower is better
lower_better = ["P/E Ratio", "Forward P/E", "PEG Ratio", "P/S Ratio", "P/B Ratio", "EV/EBITDA", "EV/Revenue"]
# For metrics where higher is better
higher_better = ["Dividend Yield", "FCF Yield", "Earnings Yield"]
if row.name not in [0, 1]: # Skip header rows
metric = row["Metric"]
# Extract numeric values for comparison
try:
# Remove non-numeric characters and convert to float
val_str = row["Value"].replace('%', '')
avg_str = row["5Y Average"].replace('%', '')
val = float(val_str)
avg = float(avg_str)
if metric in lower_better and val < avg:
return ['', 'background-color: rgba(76, 175, 80, 0.2)', '']
elif metric in higher_better and val > avg:
return ['', 'background-color: rgba(76, 175, 80, 0.2)', '']
except:
pass
return ['', '', '']
st.dataframe(valuation_df.style.apply(highlight_better_valuation, axis=1), use_container_width=True)
# Fundamental analysis summary
st.markdown("""
#### Fundamental Analysis Summary
The company demonstrates strong financial health with revenue and earnings growth exceeding industry averages. Profit margins are expanding due to operational efficiencies and economies of scale. The balance sheet remains strong with manageable debt levels and significant cash reserves.
**Growth Drivers:**
- Expansion of services ecosystem creating higher-margin revenue streams
- International market penetration, particularly in emerging markets
- New product categories showing promising adoption rates
- Strategic acquisitions enhancing technological capabilities
**Valuation Assessment:**
While the stock trades at a premium to the broader market on a P/E basis, it appears reasonably valued relative to its growth rate and historical averages. The PEG ratio of 1.52 suggests fair value considering the company's growth prospects.
""")
with stock_tabs[3]:
st.markdown(f"### Risk Assessment for {stock['symbol']}")
# Risk radar chart
st.markdown("#### Risk Profile")
# Sample risk data for radar chart
risk_categories = ['Market Risk', 'Sector Risk', 'Valuation Risk', 'Financial Risk', 'Competition Risk', 'Regulatory Risk']
risk_values = [5, 4, 6, 3, 5, 4] # 1-10 scale where lower is better
# Create radar chart
fig = go.Figure()
fig.add_trace(go.Scatterpolar(
r=risk_values,
theta=risk_categories,
fill='toself',
name=stock['symbol']
))
fig.update_layout(
polar=dict(
radialaxis=dict(
visible=True,
range=[0, 10]
)
),
showlegend=False
)
st.plotly_chart(fig, use_container_width=True)
# Risk factors
st.markdown("#### Key Risk Factors")
# Create two columns for risks
risk_col1, risk_col2 = st.columns([1, 1])
with risk_col1:
st.markdown("""
**Market & Macroeconomic Risks:**
- Sensitivity to broader market corrections
- Potential impact from rising interest rates
- Currency fluctuation effects on international revenue
**Competition & Industry Risks:**
- Increasing competition in core markets
- Rapid technological changes requiring constant innovation
- Margin pressure from emerging low-cost competitors
""")
with risk_col2:
st.markdown("""
**Company-Specific Risks:**
- Product cycle dependencies
- Key personnel dependencies
- Supply chain vulnerabilities
**Regulatory & Other Risks:**
- Potential antitrust scrutiny
- Data privacy regulation changes
- Intellectual property challenges
""")
# Risk mitigation
st.markdown("""
#### Risk Mitigation Strategies
**Position Sizing:**
Limit position to 4-6% of portfolio to manage stock-specific risk exposure.
**Entry Strategy:**
Consider dollar-cost averaging or scaling in on technical pullbacks rather than establishing full position at once.
**Hedging Considerations:**
For larger positions, consider protective puts or collar strategies during periods of elevated volatility or ahead of key events.
**Exit Strategy:**
Set a stop-loss at $187 (approximately 8% below current levels) to limit downside risk.
""")
# Historical performance and backtesting section
st.markdown('<div class="sub-header">Historical Performance & Backtesting</div>', unsafe_allow_html=True)
# Generate sample historical performance data
dates = pd.date_range(end=pd.Timestamp.today(), periods=252) # Approximately 1 year of trading days
# Create sample portfolio and benchmark returns
np.random.seed(42) # For reproducibility
# Generate correlated returns (portfolio and S&P 500)
correlation = 0.8
volatility_portfolio = 0.012
volatility_sp500 = 0.010
# Generate correlated random returns
returns_portfolio = np.random.normal(0.0005, volatility_portfolio, len(dates))
returns_sp500 = np.random.normal(0.0004, volatility_sp500, len(dates))
# Add correlation
returns_sp500 = correlation * returns_portfolio + np.sqrt(1 - correlation**2) * returns_sp500
# Create price series
portfolio_series = 100 * (1 + returns_portfolio).cumprod()
sp500_series = 100 * (1 + returns_sp500).cumprod()
# Create dataframe
performance_df = pd.DataFrame({
'Date': dates,
'Portfolio': portfolio_series,
'S&P 500': sp500_series
})
# Create columns
perf_col1, perf_col2 = st.columns([3, 2])
with perf_col1:
# Performance chart
st.subheader("Strategy Backtest Performance")
# Create line chart
fig = px.line(
performance_df,
x='Date',
y=['Portfolio', 'S&P 500'],
title='Backtest Performance vs S&P 500 (1 Year)',
labels={'value': 'Value ($)', 'variable': 'Series'}
)
fig.update_layout(hovermode='x unified')
st.plotly_chart(fig, use_container_width=True)
with perf_col2:
# Performance metrics
st.subheader("Performance Metrics")
# Calculate sample performance metrics
portfolio_return = (portfolio_series[-1] / portfolio_series[0] - 1) * 100
sp500_return = (sp500_series[-1] / sp500_series[0] - 1) * 100
# Annualized volatility
portfolio_vol = np.std(returns_portfolio) * np.sqrt(252) * 100
sp500_vol = np.std(returns_sp500) * np.sqrt(252) * 100
# Sharpe ratio (assuming risk-free rate of 2%)
portfolio_sharpe = (portfolio_return - 2) / portfolio_vol
sp500_sharpe = (sp500_return - 2) / sp500_vol
# Create metrics table
metrics_data = {
'Metric': ['Total Return (%)', 'Annualized Volatility (%)', 'Sharpe Ratio', 'Max Drawdown (%)', 'Beta', 'Alpha (%)'],
'Portfolio': [f"{portfolio_return:.2f}%", f"{portfolio_vol:.2f}%", f"{portfolio_sharpe:.2f}", "12.5%", "0.95", "5.2%"],
'S&P 500': [f"{sp500_return:.2f}%", f"{sp500_vol:.2f}%", f"{sp500_sharpe:.2f}", "14.8%", "1.00", "0.0%"]
}
metrics_df = pd.DataFrame(metrics_data)
# Style the dataframe
def highlight_better_performance(df):
styles = pd.DataFrame('', index=df.index, columns=df.columns)
# Compare metrics
for i in range(len(df)):
metric = df.iloc[i, 0]
# For metrics where higher is better
if metric in ['Total Return (%)', 'Sharpe Ratio', 'Alpha (%)']:
if float(df.iloc[i, 1].replace('%', '')) > float(df.iloc[i, 2].replace('%', '')):
styles.iloc[i, 1] = 'background-color: rgba(76, 175, 80, 0.2); color: #1e5631'
else:
styles.iloc[i, 2] = 'background-color: rgba(76, 175, 80, 0.2); color: #1e5631'
# For metrics where lower is better
elif metric in ['Annualized Volatility (%)', 'Max Drawdown (%)']:
if float(df.iloc[i, 1].replace('%', '')) < float(df.iloc[i, 2].replace('%', '')):
styles.iloc[i, 1] = 'background-color: rgba(76, 175, 80, 0.2); color: #1e5631'
else:
styles.iloc[i, 2] = 'background-color: rgba(76, 175, 80, 0.2); color: #1e5631'
return styles
st.dataframe(metrics_df.style.apply(highlight_better_performance, axis=None), use_container_width=True)
# Performance summary
st.markdown("""
#### Backtest Summary
The recommended portfolio strategy has demonstrated superior risk-adjusted returns compared to the S&P 500 benchmark. Key strengths include:
- Higher total return with lower volatility
- Improved Sharpe ratio indicating better risk-adjusted performance
- Lower maximum drawdown suggesting better downside protection
- Positive alpha indicating value added by the selection strategy
Past performance is not indicative of future results, but the strategy has shown robustness across different market conditions.
""")
# If no analysis has been run yet, show the welcome screen
else:
st.markdown("""
<div style="text-align: center; padding: 2rem;">
<img src="https://img.icons8.com/fluency/240/000000/investment-portfolio.png" width="120"/>
<h2 style="margin-top: 1rem;">Welcome to the Multi-Agent Stock Analysis System</h2>
<p style="font-size: 1.2rem; margin: 1rem 0 2rem 0;">Configure your analysis parameters in the sidebar and click "Run Full Analysis" to get started.</p>
</div>
""", unsafe_allow_html=True)
# Features overview
st.subheader("System Features")
features = [
{
"icon": "π",
"title": "Multi-agent Analysis",
"description": "Leverages 5 specialized AI agents working together to provide comprehensive stock analysis."
},
{
"icon": "π§ ",
"title": "Technical Analysis",
"description": "Evaluates price patterns, momentum indicators, and chart formations to identify market trends."
},
{
"icon": "πΌ",
"title": "Fundamental Analysis",
"description": "Assesses company financials, growth metrics, and valuation to determine intrinsic worth."
},
{
"icon": "βοΈ",
"title": "Risk Assessment",
"description": "Measures volatility, drawdowns, and various risk factors to optimize risk-adjusted returns."
},
{
"icon": "π",
"title": "Portfolio Recommendations",
"description": "Synthesizes all analyses to identify the most promising investment opportunities."
},
{
"icon": "π±",
"title": "Interactive Visualizations",
"description": "Provides rich, interactive charts and graphs to understand complex market dynamics."
}
]
# Create columns for features
cols = st.columns(3)
for i, feature in enumerate(features):
with cols[i % 3]:
st.markdown(f"""
<div style="border: 1px solid #ddd; border-radius: 10px; padding: 1.5rem; margin-bottom: 1rem; height: 200px;">
<div style="font-size: 2rem; margin-bottom: 0.5rem;">{feature['icon']}</div>
<h3 style="margin-top: 0;">{feature['title']}</h3>
<p>{feature['description']}</p>
</div>
""", unsafe_allow_html=True)
# Getting started section
st.subheader("Getting Started")
st.markdown("""
1. **Configure Analysis Parameters**: Use the sidebar to select your preferred time period, stock filters, and analysis weights.
2. **Run Analysis**: Click the "Run Full Analysis" button to start the AI agents' analysis process.
3. **Review Results**: Explore the comprehensive analysis across multiple tabs, from high-level recommendations to detailed stock-specific insights.
4. **Export Findings**: Download the analysis results in your preferred format for future reference or sharing.
""")
# Footer
st.markdown("""
<div style="margin-top: 4rem; padding-top: 1rem; border-top: 1px solid #ddd; text-align: center; color: #666; font-size: 0.8rem;">
Multi-Agent Stock Analysis System powered by CrewAI and Google Gemini 1.5<br>
Disclaimer: This tool is for informational purposes only and does not constitute investment advice.
</div>
""", unsafe_allow_html=True)
# Import statements that should be at the top of your file
if __name__ == "__main__":
main() |