Delete infridgement_chroma.py
Browse files- infridgement_chroma.py +0 -338
infridgement_chroma.py
DELETED
@@ -1,338 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import concurrent.futures
|
3 |
-
from concurrent.futures import ThreadPoolExecutor,as_completed
|
4 |
-
from functools import partial
|
5 |
-
import numpy as np
|
6 |
-
from io import StringIO
|
7 |
-
import sys
|
8 |
-
import time
|
9 |
-
import pandas as pd
|
10 |
-
from pymongo import MongoClient
|
11 |
-
import plotly.express as px
|
12 |
-
from pinecone import Pinecone, ServerlessSpec
|
13 |
-
import chromadb
|
14 |
-
import requests
|
15 |
-
from io import BytesIO
|
16 |
-
from PyPDF2 import PdfReader
|
17 |
-
import hashlib
|
18 |
-
import os
|
19 |
-
|
20 |
-
# File Imports
|
21 |
-
from embedding import get_embeddings,get_image_embeddings,get_embed_chroma,imporve_text # Ensure this file/module is available
|
22 |
-
from preprocess import filtering # Ensure this file/module is available
|
23 |
-
from search import *
|
24 |
-
|
25 |
-
|
26 |
-
# Chroma Connections
|
27 |
-
client = chromadb.PersistentClient(path = "embeddings")
|
28 |
-
collection = client.get_or_create_collection(name="data",metadata={"hnsw:space": "l2"})
|
29 |
-
|
30 |
-
|
31 |
-
def generate_hash(content):
|
32 |
-
return hashlib.sha256(content.encode('utf-8')).hexdigest()
|
33 |
-
|
34 |
-
def get_key(link):
|
35 |
-
text = ''
|
36 |
-
try:
|
37 |
-
# Fetch the PDF file from the URL
|
38 |
-
response = requests.get(link)
|
39 |
-
response.raise_for_status() # Raise an error for bad status codes
|
40 |
-
|
41 |
-
# Use BytesIO to handle the PDF content in memory
|
42 |
-
pdf_file = BytesIO(response.content)
|
43 |
-
|
44 |
-
# Load the PDF file
|
45 |
-
reader = PdfReader(pdf_file)
|
46 |
-
num_pages = len(reader.pages)
|
47 |
-
|
48 |
-
first_page_text = reader.pages[0].extract_text()
|
49 |
-
if first_page_text:
|
50 |
-
text += first_page_text
|
51 |
-
|
52 |
-
|
53 |
-
last_page_text = reader.pages[-1].extract_text()
|
54 |
-
if last_page_text:
|
55 |
-
text += last_page_text
|
56 |
-
|
57 |
-
except requests.exceptions.HTTPError as e:
|
58 |
-
print(f'HTTP error occurred: {e}')
|
59 |
-
except Exception as e:
|
60 |
-
print(f'An error occurred: {e}')
|
61 |
-
|
62 |
-
unique_key = generate_hash(text)
|
63 |
-
|
64 |
-
return unique_key
|
65 |
-
|
66 |
-
# Cosine Similarity Function
|
67 |
-
def cosine_similarity(vec1, vec2):
|
68 |
-
vec1 = np.array(vec1)
|
69 |
-
vec2 = np.array(vec2)
|
70 |
-
|
71 |
-
dot_product = np.dot(vec1, vec2.T)
|
72 |
-
magnitude_vec1 = np.linalg.norm(vec1)
|
73 |
-
magnitude_vec2 = np.linalg.norm(vec2)
|
74 |
-
|
75 |
-
if magnitude_vec1 == 0 or magnitude_vec2 == 0:
|
76 |
-
return 0.0
|
77 |
-
|
78 |
-
cosine_sim = dot_product / (magnitude_vec1 * magnitude_vec2)
|
79 |
-
return cosine_sim
|
80 |
-
|
81 |
-
def update_chroma(product_name,url,key,text,vector,log_area):
|
82 |
-
|
83 |
-
id_list = [key+str(i) for i in range(len(text))]
|
84 |
-
|
85 |
-
metadata_list = [
|
86 |
-
{ 'key':key,
|
87 |
-
'product_name': product_name,
|
88 |
-
'url': url,
|
89 |
-
'text':item
|
90 |
-
}
|
91 |
-
for item in text
|
92 |
-
]
|
93 |
-
|
94 |
-
collection.upsert(
|
95 |
-
ids = id_list,
|
96 |
-
embeddings = vector,
|
97 |
-
metadatas = metadata_list
|
98 |
-
)
|
99 |
-
|
100 |
-
logger.write(f"\n\u2713 Updated DB - {url}\n\n")
|
101 |
-
log_area.text(logger.getvalue())
|
102 |
-
|
103 |
-
|
104 |
-
# Logger class to capture output
|
105 |
-
class StreamCapture:
|
106 |
-
def __init__(self):
|
107 |
-
self.output = StringIO()
|
108 |
-
self._stdout = sys.stdout
|
109 |
-
|
110 |
-
def __enter__(self):
|
111 |
-
sys.stdout = self.output
|
112 |
-
return self.output
|
113 |
-
|
114 |
-
def __exit__(self, exc_type, exc_val, exc_tb):
|
115 |
-
sys.stdout = self._stdout
|
116 |
-
|
117 |
-
# Main Function
|
118 |
-
def score(main_product, main_url, product_count, link_count, search, logger, log_area):
|
119 |
-
|
120 |
-
|
121 |
-
data = {}
|
122 |
-
similar_products = extract_similar_products(main_product)[:product_count]
|
123 |
-
|
124 |
-
print("--> Fetching Manual Links")
|
125 |
-
# Normal Filtering + Embedding -----------------------------------------------
|
126 |
-
if search == 'All':
|
127 |
-
|
128 |
-
def process_product(product, search_function, main_product):
|
129 |
-
search_result = search_function(product)
|
130 |
-
return filtering(search_result, main_product, product, link_count)
|
131 |
-
|
132 |
-
|
133 |
-
search_functions = {
|
134 |
-
'google': search_google,
|
135 |
-
'duckduckgo': search_duckduckgo,
|
136 |
-
# 'archive': search_archive,
|
137 |
-
'github': search_github,
|
138 |
-
'wikipedia': search_wikipedia
|
139 |
-
}
|
140 |
-
|
141 |
-
with ThreadPoolExecutor() as executor:
|
142 |
-
future_to_product_search = {
|
143 |
-
executor.submit(process_product, product, search_function, main_product): (product, search_name)
|
144 |
-
for product in similar_products
|
145 |
-
for search_name, search_function in search_functions.items()
|
146 |
-
}
|
147 |
-
|
148 |
-
for future in as_completed(future_to_product_search):
|
149 |
-
product, search_name = future_to_product_search[future]
|
150 |
-
try:
|
151 |
-
if product not in data:
|
152 |
-
data[product] = {}
|
153 |
-
data[product] = future.result()
|
154 |
-
except Exception as e:
|
155 |
-
print(f"Error processing product {product} with {search_name}: {e}")
|
156 |
-
|
157 |
-
else:
|
158 |
-
|
159 |
-
for product in similar_products:
|
160 |
-
|
161 |
-
if search == 'google':
|
162 |
-
data[product] = filtering(search_google(product), main_product, product, link_count)
|
163 |
-
elif search == 'duckduckgo':
|
164 |
-
data[product] = filtering(search_duckduckgo(product), main_product, product, link_count)
|
165 |
-
elif search == 'archive':
|
166 |
-
data[product] = filtering(search_archive(product), main_product, product, link_count)
|
167 |
-
elif search == 'github':
|
168 |
-
data[product] = filtering(search_github(product), main_product, product, link_count)
|
169 |
-
elif search == 'wikipedia':
|
170 |
-
data[product] = filtering(search_wikipedia(product), main_product, product, link_count)
|
171 |
-
|
172 |
-
|
173 |
-
# Filtered Link -----------------------------------------
|
174 |
-
logger.write("\n\n\u2713 Filtered Links\n")
|
175 |
-
log_area.text(logger.getvalue())
|
176 |
-
|
177 |
-
|
178 |
-
# Main product Embeddings ---------------------------------
|
179 |
-
logger.write("\n\n--> Creating Main product Embeddings\n")
|
180 |
-
|
181 |
-
main_key = get_key(main_url)
|
182 |
-
main_text,main_vector = get_embed_chroma(main_url)
|
183 |
-
|
184 |
-
update_chroma(main_product,main_url,main_key,main_text,main_vector,log_area)
|
185 |
-
|
186 |
-
# log_area.text(logger.getvalue())
|
187 |
-
print("\n\n\u2713 Main Product embeddings Created")
|
188 |
-
|
189 |
-
|
190 |
-
logger.write("\n\n--> Creating Similar product Embeddings\n")
|
191 |
-
log_area.text(logger.getvalue())
|
192 |
-
test_embedding = [0]*768
|
193 |
-
|
194 |
-
for product in data:
|
195 |
-
for link in data[product]:
|
196 |
-
|
197 |
-
url, _ = link
|
198 |
-
similar_key = get_key(url)
|
199 |
-
|
200 |
-
res = collection.query(
|
201 |
-
query_embeddings = [test_embedding],
|
202 |
-
n_results=1,
|
203 |
-
where={"key": similar_key},
|
204 |
-
)
|
205 |
-
|
206 |
-
if not res['distances'][0]:
|
207 |
-
similar_text,similar_vector = get_embed_chroma(url)
|
208 |
-
update_chroma(product,url,similar_key,similar_text,similar_vector,log_area)
|
209 |
-
|
210 |
-
|
211 |
-
logger.write("\n\n\u2713 Similar Product embeddings Created\n")
|
212 |
-
log_area.text(logger.getvalue())
|
213 |
-
|
214 |
-
top_similar = []
|
215 |
-
|
216 |
-
for idx,chunk in enumerate(main_vector):
|
217 |
-
res = collection.query(
|
218 |
-
query_embeddings = [chunk],
|
219 |
-
n_results=1,
|
220 |
-
where={"key": {'$ne':main_key}},
|
221 |
-
include=['metadatas','embeddings','distances']
|
222 |
-
)
|
223 |
-
|
224 |
-
top_similar.append((main_text[idx],chunk,res,res['distances'][0]))
|
225 |
-
|
226 |
-
most_similar_items = sorted(top_similar,key = lambda x:x[3])[:top_similar_count]
|
227 |
-
|
228 |
-
|
229 |
-
logger.write("--------------- DONE -----------------\n")
|
230 |
-
log_area.text(logger.getvalue())
|
231 |
-
|
232 |
-
return most_similar_items
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
# Streamlit Interface
|
239 |
-
st.title("Check Infringement")
|
240 |
-
|
241 |
-
|
242 |
-
# Inputs
|
243 |
-
main_product = st.text_input('Enter Main Product Name', 'Philips led 7w bulb')
|
244 |
-
main_url = st.text_input('Enter Main Product Manual URL', 'https://www.assets.signify.com/is/content/PhilipsConsumer/PDFDownloads/Colombia/technical-sheets/ODLI20180227_001-UPD-es_CO-Ficha_Tecnica_LED_MR16_Master_7W_Dim_12V_CRI90.pdf')
|
245 |
-
search_method = st.selectbox('Choose Search Engine', ['All','duckduckgo', 'google', 'archive', 'github', 'wikipedia'])
|
246 |
-
|
247 |
-
col1, col2, col3= st.columns(3)
|
248 |
-
with col1:
|
249 |
-
product_count = st.number_input("Number of Simliar Products",min_value=1, step=1, format="%i")
|
250 |
-
with col2:
|
251 |
-
link_count = st.number_input("Number of Links per product",min_value=1, step=1, format="%i")
|
252 |
-
with col3:
|
253 |
-
need_image = st.selectbox("Process Images", ['True','False'])
|
254 |
-
|
255 |
-
top_similar_count = st.number_input("Top Similarities to be displayed",value=3,min_value=1, step=1, format="%i")
|
256 |
-
tag_option = "Complete Document Similarity"
|
257 |
-
|
258 |
-
|
259 |
-
if st.button('Check for Infringement'):
|
260 |
-
global log_output # Placeholder for log output
|
261 |
-
|
262 |
-
tab1, tab2 = st.tabs(["Output", "Console"])
|
263 |
-
|
264 |
-
with tab2:
|
265 |
-
log_output = st.empty()
|
266 |
-
|
267 |
-
with tab1:
|
268 |
-
with st.spinner('Processing...'):
|
269 |
-
with StreamCapture() as logger:
|
270 |
-
top_similar_values = score(main_product, main_url, product_count, link_count, search_method, logger, log_output)
|
271 |
-
|
272 |
-
st.success('Processing complete!')
|
273 |
-
|
274 |
-
st.subheader("Cosine Similarity Scores")
|
275 |
-
|
276 |
-
for main_text, main_vector, response, _ in top_similar_values:
|
277 |
-
product_name = response['metadatas'][0][0]['product_name']
|
278 |
-
link = response['metadatas'][0][0]['url']
|
279 |
-
similar_text = response['metadatas'][0][0]['text']
|
280 |
-
|
281 |
-
cosine_score = cosine_similarity([main_vector], response['embeddings'][0])[0][0]
|
282 |
-
|
283 |
-
# Display the product information
|
284 |
-
with st.container():
|
285 |
-
st.markdown(f"### [Product: {product_name}]({link})")
|
286 |
-
st.markdown(f"#### Cosine Score: {cosine_score:.4f}")
|
287 |
-
col1, col2 = st.columns(2)
|
288 |
-
with col1:
|
289 |
-
st.markdown(f"**Main Text:** \n{imporve_text(main_text)}")
|
290 |
-
with col2:
|
291 |
-
st.markdown(f"**Similar Text:** \n{imporve_text(similar_text)}")
|
292 |
-
|
293 |
-
st.markdown("---")
|
294 |
-
|
295 |
-
if need_image == 'True':
|
296 |
-
with st.spinner('Processing Images...'):
|
297 |
-
emb_main = get_image_embeddings(main_product)
|
298 |
-
similar_prod = extract_similar_products(main_product)[0]
|
299 |
-
emb_similar = get_image_embeddings(similar_prod)
|
300 |
-
|
301 |
-
similarity_matrix = np.zeros((5, 5))
|
302 |
-
for i in range(5):
|
303 |
-
for j in range(5):
|
304 |
-
similarity_matrix[i][j] = cosine_similarity([emb_main[i]], [emb_similar[j]])[0][0]
|
305 |
-
|
306 |
-
st.subheader("Image Similarity")
|
307 |
-
# Create an interactive heatmap
|
308 |
-
fig = px.imshow(similarity_matrix,
|
309 |
-
labels=dict(x=f"{similar_prod} Images", y=f"{main_product} Images", color="Similarity"),
|
310 |
-
x=[f"Image {i+1}" for i in range(5)],
|
311 |
-
y=[f"Image {i+1}" for i in range(5)],
|
312 |
-
color_continuous_scale="Viridis")
|
313 |
-
|
314 |
-
# Add title to the heatmap
|
315 |
-
fig.update_layout(title="Image Similarity Heatmap")
|
316 |
-
|
317 |
-
# Display the interactive heatmap
|
318 |
-
st.plotly_chart(fig)
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
# main_product = 'Philips led 7w bulb'
|
324 |
-
# main_url = 'https://www.assets.signify.com/is/content/PhilipsConsumer/PDFDownloads/Colombia/technical-sheets/ODLI20180227_001-UPD-es_CO-Ficha_Tecnica_LED_MR16_Master_7W_Dim_12V_CRI90.pdf'
|
325 |
-
# search_method = 'duckduckgo'
|
326 |
-
|
327 |
-
# product_count = 1
|
328 |
-
# link_count = 1
|
329 |
-
# need_image = False
|
330 |
-
|
331 |
-
|
332 |
-
# tag_option = "Field Wise Document Similarity"
|
333 |
-
|
334 |
-
# logger = StreamCapture()
|
335 |
-
# score(main_product, main_url,product_count, link_count, search_method, logger, st.empty())
|
336 |
-
|
337 |
-
|
338 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|