Infringement first commit
Browse files
app.py
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import concurrent.futures
|
| 3 |
+
from functools import partial
|
| 4 |
+
import numpy as np
|
| 5 |
+
from io import StringIO
|
| 6 |
+
import sys
|
| 7 |
+
import time
|
| 8 |
+
|
| 9 |
+
# File Imports
|
| 10 |
+
from embedding import get_embeddings # Ensure this file/module is available
|
| 11 |
+
from preprocess import filtering # Ensure this file/module is available
|
| 12 |
+
from search import *
|
| 13 |
+
|
| 14 |
+
# Cosine Similarity Function
|
| 15 |
+
def cosine_similarity(vec1, vec2):
|
| 16 |
+
vec1 = np.array(vec1)
|
| 17 |
+
vec2 = np.array(vec2)
|
| 18 |
+
|
| 19 |
+
dot_product = np.dot(vec1, vec2)
|
| 20 |
+
magnitude_vec1 = np.linalg.norm(vec1)
|
| 21 |
+
magnitude_vec2 = np.linalg.norm(vec2)
|
| 22 |
+
|
| 23 |
+
if magnitude_vec1 == 0 or magnitude_vec2 == 0:
|
| 24 |
+
return 0.0
|
| 25 |
+
|
| 26 |
+
cosine_sim = dot_product / (magnitude_vec1 * magnitude_vec2)
|
| 27 |
+
return cosine_sim
|
| 28 |
+
|
| 29 |
+
# Logger class to capture output
|
| 30 |
+
class StreamCapture:
|
| 31 |
+
def __init__(self):
|
| 32 |
+
self.output = StringIO()
|
| 33 |
+
self._stdout = sys.stdout
|
| 34 |
+
|
| 35 |
+
def __enter__(self):
|
| 36 |
+
sys.stdout = self.output
|
| 37 |
+
return self.output
|
| 38 |
+
|
| 39 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
| 40 |
+
sys.stdout = self._stdout
|
| 41 |
+
|
| 42 |
+
# Main Function
|
| 43 |
+
def score(main_product, main_url, search, logger, log_area):
|
| 44 |
+
data = {}
|
| 45 |
+
|
| 46 |
+
if search == 'all':
|
| 47 |
+
similar = extract_similar_products(main_product)[:1]
|
| 48 |
+
|
| 49 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
| 50 |
+
futures = []
|
| 51 |
+
|
| 52 |
+
search_functions = [search_google, search_duckduckgo, search_github, search_wikipedia]
|
| 53 |
+
|
| 54 |
+
for search_func in search_functions:
|
| 55 |
+
futures.append(executor.submit(partial(filtering, search_func(similar), main_product, similar)))
|
| 56 |
+
|
| 57 |
+
for future in concurrent.futures.as_completed(futures):
|
| 58 |
+
data[similar] = future.result()
|
| 59 |
+
|
| 60 |
+
else:
|
| 61 |
+
similar = extract_similar_products(main_product)[:1]
|
| 62 |
+
|
| 63 |
+
for product in similar:
|
| 64 |
+
|
| 65 |
+
if search == 'google':
|
| 66 |
+
data[product] = filtering(search_google(product), main_product, product)
|
| 67 |
+
elif search == 'duckduckgo':
|
| 68 |
+
data[product] = filtering(search_duckduckgo(product), main_product, product)
|
| 69 |
+
elif search == 'archive':
|
| 70 |
+
data[product] = filtering(search_archive(product), main_product, product)
|
| 71 |
+
elif search == 'github':
|
| 72 |
+
data[product] = filtering(search_github(product), main_product, product)
|
| 73 |
+
elif search == 'wikipedia':
|
| 74 |
+
data[product] = filtering(search_wikipedia(product), main_product, product)
|
| 75 |
+
|
| 76 |
+
logger.write("\n\nFiltered Links ------------------>\n")
|
| 77 |
+
logger.write(str(data) + "\n")
|
| 78 |
+
log_area.text(logger.getvalue())
|
| 79 |
+
|
| 80 |
+
logger.write("\n\nCreating Main product Embeddings ---------->\n")
|
| 81 |
+
main_result, main_embedding = get_embeddings(main_url)
|
| 82 |
+
log_area.text(logger.getvalue())
|
| 83 |
+
|
| 84 |
+
cosine_sim_scores = []
|
| 85 |
+
|
| 86 |
+
logger.write("\n\nCreating Similar product Embeddings ---------->\n")
|
| 87 |
+
log_area.text(logger.getvalue())
|
| 88 |
+
|
| 89 |
+
print("main",main_embedding)
|
| 90 |
+
|
| 91 |
+
for product in data:
|
| 92 |
+
for link in data[product][:2]:
|
| 93 |
+
|
| 94 |
+
similar_result, similar_embedding = get_embeddings(link)
|
| 95 |
+
log_area.text(logger.getvalue())
|
| 96 |
+
|
| 97 |
+
print(similar_embedding)
|
| 98 |
+
for i in range(len(main_embedding)):
|
| 99 |
+
score = cosine_similarity(main_embedding[i], similar_embedding[i])
|
| 100 |
+
cosine_sim_scores.append((product, link, i, score))
|
| 101 |
+
log_area.text(logger.getvalue())
|
| 102 |
+
|
| 103 |
+
logger.write("--------------- DONE -----------------\n")
|
| 104 |
+
log_area.text(logger.getvalue())
|
| 105 |
+
return cosine_sim_scores, main_result
|
| 106 |
+
|
| 107 |
+
# Streamlit Interface
|
| 108 |
+
st.title("Product Infringement Checker")
|
| 109 |
+
|
| 110 |
+
# Inputs
|
| 111 |
+
main_product = st.text_input('Enter Main Product Name', 'Philips led 7w bulb')
|
| 112 |
+
main_url = st.text_input('Enter Main Product Manual URL', 'https://www.assets.signify.com/is/content/PhilipsConsumer/PDFDownloads/Colombia/technical-sheets/ODLI20180227_001-UPD-es_CO-Ficha_Tecnica_LED_MR16_Master_7W_Dim_12V_CRI90.pdf')
|
| 113 |
+
search_method = st.selectbox('Choose Search Engine', ['duckduckgo', 'google', 'archive', 'github', 'wikipedia', 'all'])
|
| 114 |
+
|
| 115 |
+
if st.button('Check for Infringement'):
|
| 116 |
+
log_output = st.empty() # Placeholder for log output
|
| 117 |
+
|
| 118 |
+
with st.spinner('Processing...'):
|
| 119 |
+
with StreamCapture() as logger:
|
| 120 |
+
cosine_sim_scores, main_result = score(main_product, main_url, search_method, logger, log_output)
|
| 121 |
+
|
| 122 |
+
st.success('Processing complete!')
|
| 123 |
+
|
| 124 |
+
st.subheader("Cosine Similarity Scores")
|
| 125 |
+
|
| 126 |
+
# = score(main_product, main_url, search, logger, log_output)
|
| 127 |
+
tags = ['Introduction', 'Specifications', 'Product Overview', 'Safety Information', 'Installation Instructions', 'Setup and Configuration', 'Operation Instructions', 'Maintenance and Care', 'Troubleshooting', 'Warranty Information', 'Legal Information']
|
| 128 |
+
|
| 129 |
+
for product, link, index, value in cosine_sim_scores:
|
| 130 |
+
if not index:
|
| 131 |
+
st.write(f"Product: {product}, Link: {link}")
|
| 132 |
+
st.write(f"{tags[index]:<20} Cosine Similarity Score: {value:.2f}")
|