Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import concurrent.futures
|
| 3 |
-
from concurrent.futures import ThreadPoolExecutor,as_completed
|
| 4 |
from functools import partial
|
| 5 |
import numpy as np
|
| 6 |
from io import StringIO
|
|
@@ -16,25 +16,29 @@ from io import BytesIO
|
|
| 16 |
from PyPDF2 import PdfReader
|
| 17 |
import hashlib
|
| 18 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
# File Imports
|
| 21 |
-
from embedding import get_embeddings,get_image_embeddings,get_embed_chroma,imporve_text # Ensure this file/module is available
|
| 22 |
from preprocess import filtering # Ensure this file/module is available
|
|
|
|
| 23 |
from search import *
|
| 24 |
|
| 25 |
|
| 26 |
# Chroma Connections
|
| 27 |
-
client = chromadb.PersistentClient(path
|
| 28 |
-
|
| 29 |
-
for item in client.list_collections():
|
| 30 |
-
print(item)
|
| 31 |
-
collection = client.get_or_create_collection(name="data",metadata={"hnsw:space": "l2"})
|
| 32 |
|
| 33 |
|
| 34 |
|
| 35 |
def generate_hash(content):
|
| 36 |
return hashlib.sha256(content.encode('utf-8')).hexdigest()
|
| 37 |
|
|
|
|
| 38 |
def get_key(link):
|
| 39 |
text = ''
|
| 40 |
try:
|
|
@@ -48,11 +52,10 @@ def get_key(link):
|
|
| 48 |
# Load the PDF file
|
| 49 |
reader = PdfReader(pdf_file)
|
| 50 |
num_pages = len(reader.pages)
|
| 51 |
-
|
| 52 |
first_page_text = reader.pages[0].extract_text()
|
| 53 |
if first_page_text:
|
| 54 |
text += first_page_text
|
| 55 |
-
|
| 56 |
|
| 57 |
last_page_text = reader.pages[-1].extract_text()
|
| 58 |
if last_page_text:
|
|
@@ -62,43 +65,44 @@ def get_key(link):
|
|
| 62 |
print(f'HTTP error occurred: {e}')
|
| 63 |
except Exception as e:
|
| 64 |
print(f'An error occurred: {e}')
|
| 65 |
-
|
| 66 |
unique_key = generate_hash(text)
|
| 67 |
-
|
| 68 |
return unique_key
|
| 69 |
|
|
|
|
| 70 |
# Cosine Similarity Function
|
| 71 |
def cosine_similarity(vec1, vec2):
|
| 72 |
vec1 = np.array(vec1)
|
| 73 |
vec2 = np.array(vec2)
|
| 74 |
-
|
| 75 |
dot_product = np.dot(vec1, vec2.T)
|
| 76 |
magnitude_vec1 = np.linalg.norm(vec1)
|
| 77 |
magnitude_vec2 = np.linalg.norm(vec2)
|
| 78 |
-
|
| 79 |
if magnitude_vec1 == 0 or magnitude_vec2 == 0:
|
| 80 |
return 0.0
|
| 81 |
-
|
| 82 |
cosine_sim = dot_product / (magnitude_vec1 * magnitude_vec2)
|
| 83 |
return cosine_sim
|
| 84 |
|
| 85 |
-
def update_chroma(product_name,url,key,text,vector,log_area):
|
| 86 |
|
| 87 |
-
|
|
|
|
| 88 |
|
| 89 |
metadata_list = [
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
|
| 98 |
collection.upsert(
|
| 99 |
-
ids
|
| 100 |
-
embeddings
|
| 101 |
-
metadatas
|
| 102 |
)
|
| 103 |
|
| 104 |
logger.write(f"\n\u2713 Updated DB - {url}\n\n")
|
|
@@ -118,10 +122,9 @@ class StreamCapture:
|
|
| 118 |
def __exit__(self, exc_type, exc_val, exc_tb):
|
| 119 |
sys.stdout = self._stdout
|
| 120 |
|
|
|
|
| 121 |
# Main Function
|
| 122 |
def score(main_product, main_url, product_count, link_count, search, logger, log_area):
|
| 123 |
-
|
| 124 |
-
|
| 125 |
data = {}
|
| 126 |
similar_products = extract_similar_products(main_product)[:product_count]
|
| 127 |
|
|
@@ -132,12 +135,10 @@ def score(main_product, main_url, product_count, link_count, search, logger, log
|
|
| 132 |
def process_product(product, search_function, main_product):
|
| 133 |
search_result = search_function(product)
|
| 134 |
return filtering(search_result, main_product, product, link_count)
|
| 135 |
-
|
| 136 |
-
|
| 137 |
search_functions = {
|
| 138 |
'google': search_google,
|
| 139 |
'duckduckgo': search_duckduckgo,
|
| 140 |
-
# 'archive': search_archive,
|
| 141 |
'github': search_github,
|
| 142 |
'wikipedia': search_wikipedia
|
| 143 |
}
|
|
@@ -173,27 +174,24 @@ def score(main_product, main_url, product_count, link_count, search, logger, log
|
|
| 173 |
elif search == 'wikipedia':
|
| 174 |
data[product] = filtering(search_wikipedia(product), main_product, product, link_count)
|
| 175 |
|
| 176 |
-
|
| 177 |
# Filtered Link -----------------------------------------
|
| 178 |
logger.write("\n\n\u2713 Filtered Links\n")
|
| 179 |
log_area.text(logger.getvalue())
|
| 180 |
|
| 181 |
-
|
| 182 |
# Main product Embeddings ---------------------------------
|
| 183 |
logger.write("\n\n--> Creating Main product Embeddings\n")
|
| 184 |
|
| 185 |
main_key = get_key(main_url)
|
| 186 |
-
main_text,main_vector = get_embed_chroma(main_url)
|
| 187 |
|
| 188 |
-
update_chroma(main_product,main_url,main_key,main_text,main_vector,log_area)
|
| 189 |
|
| 190 |
# log_area.text(logger.getvalue())
|
| 191 |
print("\n\n\u2713 Main Product embeddings Created")
|
| 192 |
|
| 193 |
-
|
| 194 |
logger.write("\n\n--> Creating Similar product Embeddings\n")
|
| 195 |
-
log_area.text(logger.getvalue())
|
| 196 |
-
test_embedding = [0]*768
|
| 197 |
|
| 198 |
for product in data:
|
| 199 |
for link in data[product]:
|
|
@@ -202,33 +200,31 @@ def score(main_product, main_url, product_count, link_count, search, logger, log
|
|
| 202 |
similar_key = get_key(url)
|
| 203 |
|
| 204 |
res = collection.query(
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
|
| 210 |
if not res['distances'][0]:
|
| 211 |
-
similar_text,similar_vector = get_embed_chroma(url)
|
| 212 |
-
update_chroma(product,url,similar_key,similar_text,similar_vector,log_area)
|
| 213 |
-
|
| 214 |
|
| 215 |
logger.write("\n\n\u2713 Similar Product embeddings Created\n")
|
| 216 |
log_area.text(logger.getvalue())
|
| 217 |
|
| 218 |
top_similar = []
|
| 219 |
|
| 220 |
-
for idx,chunk in enumerate(main_vector):
|
| 221 |
res = collection.query(
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
top_similar.append((main_text[idx],chunk,res,res['distances'][0]))
|
| 229 |
-
|
| 230 |
-
most_similar_items = sorted(top_similar,key = lambda x:x[3])[:top_similar_count]
|
| 231 |
|
|
|
|
| 232 |
|
| 233 |
logger.write("--------------- DONE -----------------\n")
|
| 234 |
log_area.text(logger.getvalue())
|
|
@@ -236,71 +232,81 @@ def score(main_product, main_url, product_count, link_count, search, logger, log
|
|
| 236 |
return most_similar_items
|
| 237 |
|
| 238 |
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
# Streamlit Interface
|
| 243 |
-
st.
|
| 244 |
|
|
|
|
| 245 |
|
| 246 |
# Inputs
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
|
|
|
| 250 |
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
product_count = st.number_input("Number of Simliar Products",min_value=1, step=1, format="%i")
|
| 254 |
-
with col2:
|
| 255 |
-
link_count = st.number_input("Number of Links per product",min_value=1, step=1, format="%i")
|
| 256 |
-
with col3:
|
| 257 |
-
need_image = st.selectbox("Process Images", ['True','False'])
|
| 258 |
|
| 259 |
-
|
| 260 |
-
|
|
|
|
| 261 |
|
|
|
|
| 262 |
|
| 263 |
if st.button('Check for Infringement'):
|
| 264 |
-
global log_output
|
| 265 |
|
| 266 |
-
tab1, tab2 = st.tabs(["Output", "Console"])
|
| 267 |
|
| 268 |
with tab2:
|
| 269 |
log_output = st.empty()
|
| 270 |
|
| 271 |
with tab1:
|
| 272 |
with st.spinner('Processing...'):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
with StreamCapture() as logger:
|
| 274 |
top_similar_values = score(main_product, main_url, product_count, link_count, search_method, logger, log_output)
|
| 275 |
|
| 276 |
-
st.success('Processing complete!')
|
| 277 |
|
| 278 |
-
st.subheader("Cosine Similarity Scores")
|
| 279 |
|
| 280 |
for main_text, main_vector, response, _ in top_similar_values:
|
| 281 |
product_name = response['metadatas'][0][0]['product_name']
|
| 282 |
link = response['metadatas'][0][0]['url']
|
| 283 |
similar_text = response['metadatas'][0][0]['text']
|
|
|
|
|
|
|
| 284 |
|
| 285 |
cosine_score = cosine_similarity([main_vector], response['embeddings'][0])[0][0]
|
| 286 |
|
| 287 |
# Display the product information
|
| 288 |
-
with st.
|
| 289 |
-
|
| 290 |
-
st.markdown(f"
|
| 291 |
-
|
| 292 |
-
with
|
| 293 |
-
st.
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 298 |
|
| 299 |
if need_image == 'True':
|
| 300 |
with st.spinner('Processing Images...'):
|
| 301 |
-
emb_main = get_image_embeddings(main_product)
|
| 302 |
similar_prod = extract_similar_products(main_product)[0]
|
| 303 |
-
emb_similar = get_image_embeddings(similar_prod)
|
| 304 |
|
| 305 |
similarity_matrix = np.zeros((5, 5))
|
| 306 |
for i in range(5):
|
|
@@ -323,20 +329,37 @@ if st.button('Check for Infringement'):
|
|
| 323 |
|
| 324 |
|
| 325 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 326 |
|
| 327 |
-
#
|
| 328 |
-
|
| 329 |
-
|
| 330 |
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
|
|
|
|
|
|
|
|
|
| 334 |
|
|
|
|
|
|
|
| 335 |
|
| 336 |
-
# tag_option = "Field Wise Document Similarity"
|
| 337 |
|
| 338 |
-
|
| 339 |
-
|
| 340 |
|
|
|
|
|
|
|
| 341 |
|
|
|
|
|
|
|
| 342 |
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import concurrent.futures
|
| 3 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 4 |
from functools import partial
|
| 5 |
import numpy as np
|
| 6 |
from io import StringIO
|
|
|
|
| 16 |
from PyPDF2 import PdfReader
|
| 17 |
import hashlib
|
| 18 |
import os
|
| 19 |
+
from plotly.subplots import make_subplots
|
| 20 |
+
import plotly.graph_objects as go
|
| 21 |
+
from PIL import Image
|
| 22 |
+
import datetime
|
| 23 |
+
from apscheduler.schedulers.blocking import BlockingScheduler
|
| 24 |
|
| 25 |
# File Imports
|
| 26 |
+
from embedding import get_embeddings, get_image_embeddings, get_embed_chroma,imporve_text # Ensure this file/module is available
|
| 27 |
from preprocess import filtering # Ensure this file/module is available
|
| 28 |
+
from github_storage import update_db,download_db
|
| 29 |
from search import *
|
| 30 |
|
| 31 |
|
| 32 |
# Chroma Connections
|
| 33 |
+
client = chromadb.PersistentClient(path="embeddings")
|
| 34 |
+
collection = client.get_or_create_collection(name="data", metadata={"hnsw:space": "l2"})
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
|
| 37 |
|
| 38 |
def generate_hash(content):
|
| 39 |
return hashlib.sha256(content.encode('utf-8')).hexdigest()
|
| 40 |
|
| 41 |
+
|
| 42 |
def get_key(link):
|
| 43 |
text = ''
|
| 44 |
try:
|
|
|
|
| 52 |
# Load the PDF file
|
| 53 |
reader = PdfReader(pdf_file)
|
| 54 |
num_pages = len(reader.pages)
|
| 55 |
+
|
| 56 |
first_page_text = reader.pages[0].extract_text()
|
| 57 |
if first_page_text:
|
| 58 |
text += first_page_text
|
|
|
|
| 59 |
|
| 60 |
last_page_text = reader.pages[-1].extract_text()
|
| 61 |
if last_page_text:
|
|
|
|
| 65 |
print(f'HTTP error occurred: {e}')
|
| 66 |
except Exception as e:
|
| 67 |
print(f'An error occurred: {e}')
|
| 68 |
+
|
| 69 |
unique_key = generate_hash(text)
|
| 70 |
+
|
| 71 |
return unique_key
|
| 72 |
|
| 73 |
+
|
| 74 |
# Cosine Similarity Function
|
| 75 |
def cosine_similarity(vec1, vec2):
|
| 76 |
vec1 = np.array(vec1)
|
| 77 |
vec2 = np.array(vec2)
|
| 78 |
+
|
| 79 |
dot_product = np.dot(vec1, vec2.T)
|
| 80 |
magnitude_vec1 = np.linalg.norm(vec1)
|
| 81 |
magnitude_vec2 = np.linalg.norm(vec2)
|
| 82 |
+
|
| 83 |
if magnitude_vec1 == 0 or magnitude_vec2 == 0:
|
| 84 |
return 0.0
|
| 85 |
+
|
| 86 |
cosine_sim = dot_product / (magnitude_vec1 * magnitude_vec2)
|
| 87 |
return cosine_sim
|
| 88 |
|
|
|
|
| 89 |
|
| 90 |
+
def update_chroma(product_name, url, key, text, vector, log_area):
|
| 91 |
+
id_list = [key + str(i) for i in range(len(text))]
|
| 92 |
|
| 93 |
metadata_list = [
|
| 94 |
+
{'key': key,
|
| 95 |
+
'product_name': product_name,
|
| 96 |
+
'url': url,
|
| 97 |
+
'text': item
|
| 98 |
+
}
|
| 99 |
+
for item in text
|
| 100 |
+
]
|
| 101 |
|
| 102 |
collection.upsert(
|
| 103 |
+
ids=id_list,
|
| 104 |
+
embeddings=vector,
|
| 105 |
+
metadatas=metadata_list
|
| 106 |
)
|
| 107 |
|
| 108 |
logger.write(f"\n\u2713 Updated DB - {url}\n\n")
|
|
|
|
| 122 |
def __exit__(self, exc_type, exc_val, exc_tb):
|
| 123 |
sys.stdout = self._stdout
|
| 124 |
|
| 125 |
+
|
| 126 |
# Main Function
|
| 127 |
def score(main_product, main_url, product_count, link_count, search, logger, log_area):
|
|
|
|
|
|
|
| 128 |
data = {}
|
| 129 |
similar_products = extract_similar_products(main_product)[:product_count]
|
| 130 |
|
|
|
|
| 135 |
def process_product(product, search_function, main_product):
|
| 136 |
search_result = search_function(product)
|
| 137 |
return filtering(search_result, main_product, product, link_count)
|
| 138 |
+
|
|
|
|
| 139 |
search_functions = {
|
| 140 |
'google': search_google,
|
| 141 |
'duckduckgo': search_duckduckgo,
|
|
|
|
| 142 |
'github': search_github,
|
| 143 |
'wikipedia': search_wikipedia
|
| 144 |
}
|
|
|
|
| 174 |
elif search == 'wikipedia':
|
| 175 |
data[product] = filtering(search_wikipedia(product), main_product, product, link_count)
|
| 176 |
|
|
|
|
| 177 |
# Filtered Link -----------------------------------------
|
| 178 |
logger.write("\n\n\u2713 Filtered Links\n")
|
| 179 |
log_area.text(logger.getvalue())
|
| 180 |
|
|
|
|
| 181 |
# Main product Embeddings ---------------------------------
|
| 182 |
logger.write("\n\n--> Creating Main product Embeddings\n")
|
| 183 |
|
| 184 |
main_key = get_key(main_url)
|
| 185 |
+
main_text, main_vector = get_embed_chroma(main_url)
|
| 186 |
|
| 187 |
+
update_chroma(main_product, main_url, main_key, main_text, main_vector, log_area)
|
| 188 |
|
| 189 |
# log_area.text(logger.getvalue())
|
| 190 |
print("\n\n\u2713 Main Product embeddings Created")
|
| 191 |
|
|
|
|
| 192 |
logger.write("\n\n--> Creating Similar product Embeddings\n")
|
| 193 |
+
log_area.text(logger.getvalue())
|
| 194 |
+
test_embedding = [0] * 768
|
| 195 |
|
| 196 |
for product in data:
|
| 197 |
for link in data[product]:
|
|
|
|
| 200 |
similar_key = get_key(url)
|
| 201 |
|
| 202 |
res = collection.query(
|
| 203 |
+
query_embeddings=[test_embedding],
|
| 204 |
+
n_results=1,
|
| 205 |
+
where={"key": similar_key},
|
| 206 |
+
)
|
| 207 |
|
| 208 |
if not res['distances'][0]:
|
| 209 |
+
similar_text, similar_vector = get_embed_chroma(url)
|
| 210 |
+
update_chroma(product, url, similar_key, similar_text, similar_vector, log_area)
|
|
|
|
| 211 |
|
| 212 |
logger.write("\n\n\u2713 Similar Product embeddings Created\n")
|
| 213 |
log_area.text(logger.getvalue())
|
| 214 |
|
| 215 |
top_similar = []
|
| 216 |
|
| 217 |
+
for idx, chunk in enumerate(main_vector):
|
| 218 |
res = collection.query(
|
| 219 |
+
query_embeddings=[chunk],
|
| 220 |
+
n_results=1,
|
| 221 |
+
where={"key": {'$ne': main_key}},
|
| 222 |
+
include=['metadatas', 'embeddings', 'distances']
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
top_similar.append((main_text[idx], chunk, res, res['distances'][0]))
|
|
|
|
|
|
|
| 226 |
|
| 227 |
+
most_similar_items = sorted(top_similar, key=lambda x: x[3])[:top_similar_count]
|
| 228 |
|
| 229 |
logger.write("--------------- DONE -----------------\n")
|
| 230 |
log_area.text(logger.getvalue())
|
|
|
|
| 232 |
return most_similar_items
|
| 233 |
|
| 234 |
|
|
|
|
|
|
|
|
|
|
| 235 |
# Streamlit Interface
|
| 236 |
+
# st.set_page_config(layout="wide", page_title="Infringement Checker", page_icon="🔍")
|
| 237 |
|
| 238 |
+
st.title("🔍 Infringement Checker")
|
| 239 |
|
| 240 |
# Inputs
|
| 241 |
+
with st.sidebar:
|
| 242 |
+
st.header("📋 Product Information")
|
| 243 |
+
main_product = st.text_input('Enter Main Product Name', 'Philips led 7w bulb')
|
| 244 |
+
main_url = st.text_input('Enter Main Product Manual URL', 'https://www.assets.signify.com/is/content/PhilipsConsumer/PDFDownloads/Colombia/technical-sheets/ODLI20180227_001-UPD-es_CO-Ficha_Tecnica_LED_MR16_Master_7W_Dim_12V_CRI90.pdf')
|
| 245 |
|
| 246 |
+
st.header("🔎 Search Settings")
|
| 247 |
+
search_method = st.selectbox('Choose Search Engine', ['All', 'duckduckgo', 'google', 'archive', 'github', 'wikipedia'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
|
| 249 |
+
product_count = st.number_input("Number of Similar Products", min_value=1, step=1, format="%i")
|
| 250 |
+
link_count = st.number_input("Number of Links per Product", min_value=1, step=1, format="%i")
|
| 251 |
+
need_image = st.selectbox("Process Images", ['True', 'False'])
|
| 252 |
|
| 253 |
+
top_similar_count = st.number_input("Top Similarities to be Displayed", value=3, min_value=1, step=1, format="%i")
|
| 254 |
|
| 255 |
if st.button('Check for Infringement'):
|
| 256 |
+
global log_output
|
| 257 |
|
| 258 |
+
tab1, tab2 = st.tabs(["📊 Output", "🖥️ Console"])
|
| 259 |
|
| 260 |
with tab2:
|
| 261 |
log_output = st.empty()
|
| 262 |
|
| 263 |
with tab1:
|
| 264 |
with st.spinner('Processing...'):
|
| 265 |
+
|
| 266 |
+
if not os.path.exists('/home/user/app/embeddings'):
|
| 267 |
+
download_db()
|
| 268 |
+
print("\u2713 Downloaded Database\n\n")
|
| 269 |
+
|
| 270 |
with StreamCapture() as logger:
|
| 271 |
top_similar_values = score(main_product, main_url, product_count, link_count, search_method, logger, log_output)
|
| 272 |
|
| 273 |
+
st.success('✅ Processing complete!')
|
| 274 |
|
| 275 |
+
st.subheader("📈 Cosine Similarity Scores")
|
| 276 |
|
| 277 |
for main_text, main_vector, response, _ in top_similar_values:
|
| 278 |
product_name = response['metadatas'][0][0]['product_name']
|
| 279 |
link = response['metadatas'][0][0]['url']
|
| 280 |
similar_text = response['metadatas'][0][0]['text']
|
| 281 |
+
# similar_text_refined = imporve_text(similar_text)
|
| 282 |
+
# main_text_refined = imporve_text(main_text)
|
| 283 |
|
| 284 |
cosine_score = cosine_similarity([main_vector], response['embeddings'][0])[0][0]
|
| 285 |
|
| 286 |
# Display the product information
|
| 287 |
+
with st.expander(f"### Product: {product_name} - Score: {cosine_score:.4f}"):
|
| 288 |
+
link = link.replace(" ","%20")
|
| 289 |
+
st.markdown(f"[View Product Manual]({link})")
|
| 290 |
+
tab1, tab2 = st.tabs(["Raw Text", "Refined Text"])
|
| 291 |
+
with tab2:
|
| 292 |
+
col1, col2 = st.columns(2)
|
| 293 |
+
with col1:
|
| 294 |
+
st.markdown(f"*Main Text:\n* {imporve_text(main_text)}")
|
| 295 |
+
with col2:
|
| 296 |
+
st.markdown(f"*Similar Text\n:* {imporve_text(similar_text)}")
|
| 297 |
+
|
| 298 |
+
with tab1:
|
| 299 |
+
col1, col2 = st.columns(2)
|
| 300 |
+
with col1:
|
| 301 |
+
st.markdown(f"*Main Text:* {main_text}")
|
| 302 |
+
with col2:
|
| 303 |
+
st.markdown(f"*Similar Text:* {similar_text}")
|
| 304 |
|
| 305 |
if need_image == 'True':
|
| 306 |
with st.spinner('Processing Images...'):
|
| 307 |
+
emb_main , main_prod_imgs = get_image_embeddings(main_product)
|
| 308 |
similar_prod = extract_similar_products(main_product)[0]
|
| 309 |
+
emb_similar , similar_prod_imgs = get_image_embeddings(similar_prod)
|
| 310 |
|
| 311 |
similarity_matrix = np.zeros((5, 5))
|
| 312 |
for i in range(5):
|
|
|
|
| 329 |
|
| 330 |
|
| 331 |
|
| 332 |
+
@st.experimental_fragment
|
| 333 |
+
def image_viewer():
|
| 334 |
+
# Form to handle image selection
|
| 335 |
+
|
| 336 |
+
st.subheader("Image Viewer")
|
| 337 |
+
|
| 338 |
+
selected_row = st.selectbox('Select a row (Main Product Image)', [f'Image {i+1}' for i in range(5)])
|
| 339 |
+
selected_col = st.selectbox('Select a column (Similar Product Image)', [f'Image {i+1}' for i in range(5)])
|
| 340 |
|
| 341 |
+
# Get the selected indices from session state
|
| 342 |
+
row_idx = int(selected_row.split()[1]) - 1
|
| 343 |
+
col_idx = int(selected_col.split()[1]) - 1
|
| 344 |
|
| 345 |
+
col1, col2 = st.columns(2)
|
| 346 |
+
|
| 347 |
+
with col1:
|
| 348 |
+
st.image(main_prod_imgs[row_idx], caption=f'Main Product Image {row_idx+1}', use_column_width=True)
|
| 349 |
+
with col2:
|
| 350 |
+
st.image(similar_prod_imgs[col_idx], caption=f'Similar Product Image {col_idx+1}', use_column_width=True)
|
| 351 |
|
| 352 |
+
# Call the fragment
|
| 353 |
+
image_viewer()
|
| 354 |
|
|
|
|
| 355 |
|
| 356 |
+
def job_function():
|
| 357 |
+
print("Job executed at:", datetime.datetime.now())
|
| 358 |
|
| 359 |
+
# Create an instance of scheduler
|
| 360 |
+
scheduler = BlockingScheduler()
|
| 361 |
|
| 362 |
+
# Schedule job_function to be executed every 10 seconds
|
| 363 |
+
scheduler.add_job(job_function, 'interval', seconds=5)
|
| 364 |
|
| 365 |
+
scheduler.start()
|