Spaces:
Running
Running
import os | |
import sys | |
import faiss | |
import logging | |
import argparse | |
import logging.handlers | |
import numpy as np | |
from multiprocessing import cpu_count | |
from sklearn.cluster import MiniBatchKMeans | |
sys.path.append(os.getcwd()) | |
from main.configs.config import Config | |
translations = Config().translations | |
def parse_arguments(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model_name", type=str, required=True) | |
parser.add_argument("--rvc_version", type=str, default="v2") | |
parser.add_argument("--index_algorithm", type=str, default="Auto") | |
return parser.parse_args() | |
def main(): | |
args = parse_arguments() | |
exp_dir = os.path.join("assets", "logs", args.model_name) | |
version = args.rvc_version | |
index_algorithm = args.index_algorithm | |
logger = logging.getLogger(__name__) | |
if logger.hasHandlers(): logger.handlers.clear() | |
else: | |
console_handler = logging.StreamHandler() | |
console_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S") | |
console_handler.setFormatter(console_formatter) | |
console_handler.setLevel(logging.INFO) | |
file_handler = logging.handlers.RotatingFileHandler(os.path.join(exp_dir, "create_index.log"), maxBytes=5*1024*1024, backupCount=3, encoding='utf-8') | |
file_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S") | |
file_handler.setFormatter(file_formatter) | |
file_handler.setLevel(logging.DEBUG) | |
logger.addHandler(console_handler) | |
logger.addHandler(file_handler) | |
logger.setLevel(logging.DEBUG) | |
log_data = {translations['modelname']: args.model_name, translations['model_path']: exp_dir, translations['training_version']: version, translations['index_algorithm_info']: index_algorithm} | |
for key, value in log_data.items(): | |
logger.debug(f"{key}: {value}") | |
try: | |
npys = [] | |
feature_dir = os.path.join(exp_dir, f"{version}_extracted") | |
model_name = os.path.basename(exp_dir) | |
for name in sorted(os.listdir(feature_dir)): | |
npys.append(np.load(os.path.join(feature_dir, name))) | |
big_npy = np.concatenate(npys, axis=0) | |
big_npy_idx = np.arange(big_npy.shape[0]) | |
np.random.shuffle(big_npy_idx) | |
big_npy = big_npy[big_npy_idx] | |
if big_npy.shape[0] > 2e5 and (index_algorithm == "Auto" or index_algorithm == "KMeans"): big_npy = (MiniBatchKMeans(n_clusters=10000, verbose=True, batch_size=256 * cpu_count(), compute_labels=False, init="random").fit(big_npy).cluster_centers_) | |
np.save(os.path.join(exp_dir, "total_fea.npy"), big_npy) | |
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39) | |
index_trained = faiss.index_factory(256 if version == "v1" else 768, f"IVF{n_ivf},Flat") | |
index_ivf_trained = faiss.extract_index_ivf(index_trained) | |
index_ivf_trained.nprobe = 1 | |
index_trained.train(big_npy) | |
faiss.write_index(index_trained, os.path.join(exp_dir, f"trained_IVF{n_ivf}_Flat_nprobe_{index_ivf_trained.nprobe}_{model_name}_{version}.index")) | |
index_added = faiss.index_factory(256 if version == "v1" else 768, f"IVF{n_ivf},Flat") | |
index_ivf_added = faiss.extract_index_ivf(index_added) | |
index_ivf_added.nprobe = 1 | |
index_added.train(big_npy) | |
batch_size_add = 8192 | |
for i in range(0, big_npy.shape[0], batch_size_add): | |
index_added.add(big_npy[i : i + batch_size_add]) | |
index_filepath_added = os.path.join(exp_dir, f"added_IVF{n_ivf}_Flat_nprobe_{index_ivf_added.nprobe}_{model_name}_{version}.index") | |
faiss.write_index(index_added, index_filepath_added) | |
logger.info(f"{translations['save_index']} '{index_filepath_added}'") | |
except Exception as e: | |
logger.error(f"{translations['create_index_error']}: {e}") | |
import traceback | |
logger.debug(traceback.format_exc()) | |
if __name__ == "__main__": main() |