Spaces:
Running
Running
import tqdm | |
import torch | |
import random | |
from torch import nn | |
from torch.nn import functional as F | |
from concurrent.futures import ThreadPoolExecutor | |
from .utils import center_trim | |
class DummyPoolExecutor: | |
class DummyResult: | |
def __init__(self, func, *args, **kwargs): | |
self.func = func | |
self.args = args | |
self.kwargs = kwargs | |
def result(self): | |
return self.func(*self.args, **self.kwargs) | |
def __init__(self, workers=0): | |
pass | |
def submit(self, func, *args, **kwargs): | |
return DummyPoolExecutor.DummyResult(func, *args, **kwargs) | |
def __enter__(self): | |
return self | |
def __exit__(self, exc_type, exc_value, exc_tb): | |
return | |
class BagOfModels(nn.Module): | |
def __init__(self, models, weights = None, segment = None): | |
super().__init__() | |
assert len(models) > 0 | |
first = models[0] | |
for other in models: | |
assert other.sources == first.sources | |
assert other.samplerate == first.samplerate | |
assert other.audio_channels == first.audio_channels | |
if segment is not None: other.segment = segment | |
self.audio_channels = first.audio_channels | |
self.samplerate = first.samplerate | |
self.sources = first.sources | |
self.models = nn.ModuleList(models) | |
if weights is None: weights = [[1.0 for _ in first.sources] for _ in models] | |
else: | |
assert len(weights) == len(models) | |
for weight in weights: | |
assert len(weight) == len(first.sources) | |
self.weights = weights | |
def forward(self, x): | |
pass | |
class TensorChunk: | |
def __init__(self, tensor, offset=0, length=None): | |
total_length = tensor.shape[-1] | |
assert offset >= 0 | |
assert offset < total_length | |
length = total_length - offset if length is None else min(total_length - offset, length) | |
if isinstance(tensor, TensorChunk): | |
self.tensor = tensor.tensor | |
self.offset = offset + tensor.offset | |
else: | |
self.tensor = tensor | |
self.offset = offset | |
self.length = length | |
self.device = tensor.device | |
def shape(self): | |
shape = list(self.tensor.shape) | |
shape[-1] = self.length | |
return shape | |
def padded(self, target_length): | |
delta = target_length - self.length | |
total_length = self.tensor.shape[-1] | |
assert delta >= 0 | |
start = self.offset - delta // 2 | |
end = start + target_length | |
correct_start = max(0, start) | |
correct_end = min(total_length, end) | |
pad_left = correct_start - start | |
pad_right = end - correct_end | |
out = F.pad(self.tensor[..., correct_start:correct_end], (pad_left, pad_right)) | |
assert out.shape[-1] == target_length | |
return out | |
def tensor_chunk(tensor_or_chunk): | |
if isinstance(tensor_or_chunk, TensorChunk): return tensor_or_chunk | |
else: | |
assert isinstance(tensor_or_chunk, torch.Tensor) | |
return TensorChunk(tensor_or_chunk) | |
def apply_model(model, mix, shifts=1, split=True, overlap=0.25, transition_power=1.0, static_shifts=1, set_progress_bar=None, device=None, progress=False, num_workers=0, pool=None): | |
global fut_length, bag_num, prog_bar | |
device = mix.device if device is None else torch.device(device) | |
if pool is None: pool = ThreadPoolExecutor(num_workers) if num_workers > 0 and device.type == "cpu" else DummyPoolExecutor() | |
kwargs = { | |
"shifts": shifts, | |
"split": split, | |
"overlap": overlap, | |
"transition_power": transition_power, | |
"progress": progress, | |
"device": device, | |
"pool": pool, | |
"set_progress_bar": set_progress_bar, | |
"static_shifts": static_shifts, | |
} | |
if isinstance(model, BagOfModels): | |
estimates, fut_length, prog_bar, current_model = 0, 0, 0, 0 | |
totals = [0] * len(model.sources) | |
bag_num = len(model.models) | |
for sub_model, weight in zip(model.models, model.weights): | |
original_model_device = next(iter(sub_model.parameters())).device | |
sub_model.to(device) | |
fut_length += fut_length | |
current_model += 1 | |
out = apply_model(sub_model, mix, **kwargs) | |
sub_model.to(original_model_device) | |
for k, inst_weight in enumerate(weight): | |
out[:, k, :, :] *= inst_weight | |
totals[k] += inst_weight | |
estimates += out | |
del out | |
for k in range(estimates.shape[1]): | |
estimates[:, k, :, :] /= totals[k] | |
return estimates | |
model.to(device) | |
model.eval() | |
assert transition_power >= 1 | |
batch, channels, length = mix.shape | |
if shifts: | |
kwargs["shifts"] = 0 | |
max_shift = int(0.5 * model.samplerate) | |
mix = tensor_chunk(mix) | |
padded_mix = mix.padded(length + 2 * max_shift) | |
out = 0 | |
for _ in range(shifts): | |
offset = random.randint(0, max_shift) | |
shifted = TensorChunk(padded_mix, offset, length + max_shift - offset) | |
shifted_out = apply_model(model, shifted, **kwargs) | |
out += shifted_out[..., max_shift - offset :] | |
out /= shifts | |
return out | |
elif split: | |
kwargs["split"] = False | |
out = torch.zeros(batch, len(model.sources), channels, length, device=mix.device) | |
sum_weight = torch.zeros(length, device=mix.device) | |
segment = int(model.samplerate * model.segment) | |
stride = int((1 - overlap) * segment) | |
offsets = range(0, length, stride) | |
weight = torch.cat([torch.arange(1, segment // 2 + 1, device=device), torch.arange(segment - segment // 2, 0, -1, device=device)]) | |
assert len(weight) == segment | |
weight = (weight / weight.max()) ** transition_power | |
futures = [] | |
for offset in offsets: | |
chunk = TensorChunk(mix, offset, segment) | |
future = pool.submit(apply_model, model, chunk, **kwargs) | |
futures.append((future, offset)) | |
offset += segment | |
if progress: futures = tqdm.tqdm(futures) | |
for future, offset in futures: | |
if set_progress_bar: | |
fut_length = len(futures) * bag_num * static_shifts | |
prog_bar += 1 | |
set_progress_bar(0.1, (0.8 / fut_length * prog_bar)) | |
chunk_out = future.result() | |
chunk_length = chunk_out.shape[-1] | |
out[..., offset : offset + segment] += (weight[:chunk_length] * chunk_out).to(mix.device) | |
sum_weight[offset : offset + segment] += weight[:chunk_length].to(mix.device) | |
assert sum_weight.min() > 0 | |
out /= sum_weight | |
return out | |
else: | |
valid_length = model.valid_length(length) if hasattr(model, "valid_length") else length | |
mix = tensor_chunk(mix) | |
padded_mix = mix.padded(valid_length).to(device) | |
with torch.no_grad(): | |
out = model(padded_mix) | |
return center_trim(out, length) | |
def demucs_segments(demucs_segment, demucs_model): | |
if demucs_segment == "Default": | |
segment = None | |
if isinstance(demucs_model, BagOfModels): | |
if segment is not None: | |
for sub in demucs_model.models: | |
sub.segment = segment | |
else: | |
if segment is not None: sub.segment = segment | |
else: | |
try: | |
segment = int(demucs_segment) | |
if isinstance(demucs_model, BagOfModels): | |
if segment is not None: | |
for sub in demucs_model.models: | |
sub.segment = segment | |
else: | |
if segment is not None: sub.segment = segment | |
except: | |
segment = None | |
if isinstance(demucs_model, BagOfModels): | |
if segment is not None: | |
for sub in demucs_model.models: | |
sub.segment = segment | |
else: | |
if segment is not None: sub.segment = segment | |
return demucs_model |