Commit
·
d16240b
1
Parent(s):
34814ca
calculator
Browse files
app.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, Union
|
2 |
+
from huggingface_hub import get_safetensors_metadata, hf_hub_download
|
3 |
+
import argparse
|
4 |
+
import sys
|
5 |
+
import json
|
6 |
+
import gradio as gr
|
7 |
+
from typing import Dict, Union
|
8 |
+
from huggingface_hub import get_safetensors_metadata, hf_hub_download
|
9 |
+
import json
|
10 |
+
|
11 |
+
# Example:
|
12 |
+
# python get_gpu_memory.py Qwen/Qwen2.5-7B-Instruct
|
13 |
+
|
14 |
+
# Dictionary mapping dtype strings to their byte sizes
|
15 |
+
bytes_per_dtype: Dict[str, float] = {
|
16 |
+
"int4": 0.5,
|
17 |
+
"int8": 1,
|
18 |
+
"float8": 1,
|
19 |
+
"float16": 2,
|
20 |
+
"float32": 4,
|
21 |
+
}
|
22 |
+
|
23 |
+
|
24 |
+
def calculate_kv_cache_memory(context_size: int, model_id: str, dtype: str, filename: str="config.json"):
|
25 |
+
"""
|
26 |
+
Implements the formula suggested in https://medium.com/@tejaswi_kashyap/memory-optimization-in-llms-leveraging-kv-cache-quantization-for-efficient-inference-94bc3df5faef
|
27 |
+
"""
|
28 |
+
try:
|
29 |
+
file_path = hf_hub_download(repo_id=model_id, filename=filename)
|
30 |
+
|
31 |
+
with open(file_path, 'r') as f:
|
32 |
+
config = json.load(f)
|
33 |
+
|
34 |
+
keys_to_find = {"num_hidden_layers", "num_key_value_heads", "hidden_size", "num_attention_heads"}
|
35 |
+
|
36 |
+
config = extract_keys(config, keys_to_find)
|
37 |
+
|
38 |
+
num_layers = config["num_hidden_layers"]
|
39 |
+
|
40 |
+
if "num_key_value_heads" in config:
|
41 |
+
num_att_heads = config["num_key_value_heads"]
|
42 |
+
else:
|
43 |
+
num_att_heads = config["num_attention_heads"]
|
44 |
+
|
45 |
+
dim_att_head = config["hidden_size"] // config["num_attention_heads"]
|
46 |
+
|
47 |
+
dtype_bytes = bytes_per_dtype[dtype]
|
48 |
+
|
49 |
+
memory_per_token = num_layers * num_att_heads * dim_att_head * dtype_bytes * 2
|
50 |
+
|
51 |
+
context_size_memory_footprint_gb = (context_size * memory_per_token) / 1_000_000_000
|
52 |
+
|
53 |
+
return context_size_memory_footprint_gb
|
54 |
+
|
55 |
+
except Exception as e:
|
56 |
+
print(f"Error estimating context size: {str(e)}", file=sys.stderr)
|
57 |
+
return None
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
def extract_keys(json_obj, keys_to_extract):
|
62 |
+
"""
|
63 |
+
Recursively searches for specific keys in a nested JSON object.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
json_obj (dict or list): The JSON data (parsed as a dictionary or list).
|
67 |
+
keys_to_extract (set): A set of keys to extract values for.
|
68 |
+
|
69 |
+
Returns:
|
70 |
+
dict: A dictionary with found key-value pairs.
|
71 |
+
"""
|
72 |
+
extracted_values = {}
|
73 |
+
|
74 |
+
def recursive_search(obj):
|
75 |
+
if isinstance(obj, dict):
|
76 |
+
for key, value in obj.items():
|
77 |
+
if key in keys_to_extract:
|
78 |
+
extracted_values[key] = value
|
79 |
+
recursive_search(value)
|
80 |
+
elif isinstance(obj, list):
|
81 |
+
for item in obj:
|
82 |
+
recursive_search(item)
|
83 |
+
|
84 |
+
recursive_search(json_obj)
|
85 |
+
return extracted_values
|
86 |
+
|
87 |
+
|
88 |
+
def calculate_model_memory(parameters: float, bytes: float) -> float:
|
89 |
+
"""Calculates the GPU memory required for serving a Large Language Model (LLM).
|
90 |
+
This function estimates the GPU memory needed using the formula:
|
91 |
+
M = (P * 4B) / (32 / Q) * 1.18
|
92 |
+
where:
|
93 |
+
- M is the GPU memory in Gigabytes
|
94 |
+
- P is the number of parameters in billions (e.g., 7 for a 7B model)
|
95 |
+
- 4B represents 4 bytes per parameter
|
96 |
+
- 32 represents bits in 4 bytes
|
97 |
+
- Q is the quantization bits (e.g., 16, 8, or 4 bits)
|
98 |
+
- 1.18 represents ~18% overhead for additional GPU memory requirements
|
99 |
+
Args:
|
100 |
+
parameters: Number of model parameters in billions
|
101 |
+
bytes: Number of bytes per parameter based on dtype
|
102 |
+
Returns:
|
103 |
+
Estimated GPU memory required in Gigabytes
|
104 |
+
Examples:
|
105 |
+
>>> calculate_gpu_memory(7, bytes_per_dtype["float16"])
|
106 |
+
13.72
|
107 |
+
>>> calculate_gpu_memory(13, bytes_per_dtype["int8"])
|
108 |
+
12.74
|
109 |
+
"""
|
110 |
+
memory = round((parameters * 4) / (32 / (bytes * 8)) * 1.18, 2)
|
111 |
+
return memory
|
112 |
+
|
113 |
+
|
114 |
+
def get_model_size(model_id: str, dtype: str = "float16") -> Union[float, None]:
|
115 |
+
"""Get the estimated GPU memory requirement for a Hugging Face model.
|
116 |
+
Args:
|
117 |
+
model_id: Hugging Face model ID (e.g., "facebook/opt-350m")
|
118 |
+
dtype: Data type for model loading ("float16", "int8", etc.)
|
119 |
+
Returns:
|
120 |
+
Estimated GPU memory in GB, or None if estimation fails
|
121 |
+
Examples:
|
122 |
+
>>> get_model_size("facebook/opt-350m")
|
123 |
+
0.82
|
124 |
+
>>> get_model_size("meta-llama/Llama-2-7b-hf", dtype="int8")
|
125 |
+
6.86
|
126 |
+
"""
|
127 |
+
try:
|
128 |
+
|
129 |
+
metadata = get_safetensors_metadata(model_id)
|
130 |
+
if not metadata or not metadata.parameter_count:
|
131 |
+
raise ValueError(f"Could not fetch metadata for model: {model_id}")
|
132 |
+
|
133 |
+
model_parameters = list(metadata.parameter_count.values())[0]
|
134 |
+
model_parameters = int(model_parameters) / 1_000_000_000 # Convert to billions
|
135 |
+
return calculate_model_memory(model_parameters, bytes_per_dtype[dtype])
|
136 |
+
|
137 |
+
except Exception as e:
|
138 |
+
print(f"Error estimating model size: {str(e)}", file=sys.stderr)
|
139 |
+
return None
|
140 |
+
|
141 |
+
|
142 |
+
def estimate_vram(model_id, dtype, context_size):
|
143 |
+
if dtype not in bytes_per_dtype:
|
144 |
+
return "Error: Unsupported dtype"
|
145 |
+
|
146 |
+
model_memory = get_model_size(model_id, dtype)
|
147 |
+
context_memory = calculate_kv_cache_memory(context_size, model_id, dtype)
|
148 |
+
|
149 |
+
if isinstance(model_memory, str) or isinstance(context_memory, str):
|
150 |
+
return model_memory if isinstance(model_memory, str) else context_memory
|
151 |
+
|
152 |
+
total_memory = model_memory + context_memory
|
153 |
+
return f"Model VRAM: {model_memory:.2f} GB\nContext VRAM: {context_memory:.2f} GB\nTotal VRAM: {total_memory:.2f} GB"
|
154 |
+
|
155 |
+
iface = gr.Interface(
|
156 |
+
fn=estimate_vram,
|
157 |
+
inputs=[
|
158 |
+
gr.Textbox(label="Hugging Face Model ID", value="google/gemma-3-27b-it"),
|
159 |
+
gr.Dropdown(choices=list(bytes_per_dtype.keys()), label="Data Type", value="float16"),
|
160 |
+
gr.Number(label="Context Size", value=128000)
|
161 |
+
],
|
162 |
+
outputs=gr.Textbox(label="Estimated VRAM Usage"),
|
163 |
+
title="LLM GPU VRAM Calculator",
|
164 |
+
description="Estimate the VRAM requirements of a model and context size."
|
165 |
+
)
|
166 |
+
|
167 |
+
iface.launch()
|