Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,154 +1,310 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
# import spaces #[uncomment to use ZeroGPU]
|
6 |
-
from diffusers import DiffusionPipeline
|
7 |
-
import torch
|
8 |
-
|
9 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
-
model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
|
11 |
-
|
12 |
-
if torch.cuda.is_available():
|
13 |
-
torch_dtype = torch.float16
|
14 |
-
else:
|
15 |
-
torch_dtype = torch.float32
|
16 |
-
|
17 |
-
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
18 |
-
pipe = pipe.to(device)
|
19 |
-
|
20 |
-
MAX_SEED = np.iinfo(np.int32).max
|
21 |
-
MAX_IMAGE_SIZE = 1024
|
22 |
-
|
23 |
-
|
24 |
-
# @spaces.GPU #[uncomment to use ZeroGPU]
|
25 |
-
def infer(
|
26 |
-
prompt,
|
27 |
-
negative_prompt,
|
28 |
-
seed,
|
29 |
-
randomize_seed,
|
30 |
-
width,
|
31 |
-
height,
|
32 |
-
guidance_scale,
|
33 |
-
num_inference_steps,
|
34 |
-
progress=gr.Progress(track_tqdm=True),
|
35 |
-
):
|
36 |
-
if randomize_seed:
|
37 |
-
seed = random.randint(0, MAX_SEED)
|
38 |
-
|
39 |
-
generator = torch.Generator().manual_seed(seed)
|
40 |
-
|
41 |
-
image = pipe(
|
42 |
-
prompt=prompt,
|
43 |
-
negative_prompt=negative_prompt,
|
44 |
-
guidance_scale=guidance_scale,
|
45 |
-
num_inference_steps=num_inference_steps,
|
46 |
-
width=width,
|
47 |
-
height=height,
|
48 |
-
generator=generator,
|
49 |
-
).images[0]
|
50 |
-
|
51 |
-
return image, seed
|
52 |
-
|
53 |
-
|
54 |
-
examples = [
|
55 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
56 |
-
"An astronaut riding a green horse",
|
57 |
-
"A delicious ceviche cheesecake slice",
|
58 |
-
]
|
59 |
-
|
60 |
-
css = """
|
61 |
-
#col-container {
|
62 |
-
margin: 0 auto;
|
63 |
-
max-width: 640px;
|
64 |
-
}
|
65 |
"""
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
max_lines=1,
|
76 |
-
placeholder="Enter your prompt",
|
77 |
-
container=False,
|
78 |
-
)
|
79 |
-
|
80 |
-
run_button = gr.Button("Run", scale=0, variant="primary")
|
81 |
-
|
82 |
-
result = gr.Image(label="Result", show_label=False)
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
max_lines=1,
|
88 |
-
placeholder="Enter a negative prompt",
|
89 |
-
visible=False,
|
90 |
-
)
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
)
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
minimum=256,
|
114 |
-
maximum=MAX_IMAGE_SIZE,
|
115 |
-
step=32,
|
116 |
-
value=1024, # Replace with defaults that work for your model
|
117 |
-
)
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
)
|
127 |
-
|
128 |
-
|
129 |
-
label="
|
130 |
-
|
131 |
-
|
132 |
-
step=1,
|
133 |
-
value=2, # Replace with defaults that work for your model
|
134 |
)
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
if __name__ == "__main__":
|
154 |
-
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
Cosmos-Predict2 for Hugging Face Spaces ZeroGPU
|
4 |
+
Optimized for H200 with 70GB VRAM - much simpler than RTX 5080 version!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
"""
|
6 |
|
7 |
+
import os
|
8 |
+
import gradio as gr
|
9 |
+
import torch
|
10 |
+
import spaces
|
11 |
+
from diffusers import DiffusionPipeline
|
12 |
+
import gc
|
13 |
+
from typing import Optional
|
14 |
+
import warnings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
# Suppress warnings for cleaner output
|
17 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
18 |
+
warnings.filterwarnings("ignore", category=FutureWarning)
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
class CosmosZeroGPUApp:
|
21 |
+
def __init__(self):
|
22 |
+
self.pipe = None
|
23 |
+
self.model_loaded = False
|
24 |
+
print("๐ Cosmos-Predict2 ZeroGPU App Starting...")
|
25 |
+
|
26 |
+
def get_memory_info(self):
|
27 |
+
"""Get current memory usage - simplified for ZeroGPU"""
|
28 |
+
if torch.cuda.is_available():
|
29 |
+
vram_used = torch.cuda.memory_allocated(0) / 1024**3
|
30 |
+
return f"GPU Memory Used: {vram_used:.1f}GB (H200 - 70GB Available)"
|
31 |
+
else:
|
32 |
+
return "GPU: Not allocated (ZeroGPU will assign when needed)"
|
33 |
+
|
34 |
+
@spaces.GPU(duration=300) # 5 minutes for model loading
|
35 |
+
def load_model(self, progress=gr.Progress()):
|
36 |
+
"""Load model with ZeroGPU"""
|
37 |
+
if self.model_loaded:
|
38 |
+
return "โ
Model already loaded!", self.get_memory_info()
|
39 |
+
|
40 |
+
try:
|
41 |
+
progress(0.1, desc="๐ Initializing ZeroGPU...")
|
42 |
+
|
43 |
+
# ZeroGPU automatically handles device allocation
|
44 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
45 |
+
print(f"๐ฎ Using device: {device}")
|
46 |
+
|
47 |
+
progress(0.3, desc="๐ฅ Loading Cosmos-Predict2 model...")
|
48 |
+
|
49 |
+
model_id = "nvidia/Cosmos-Predict2-2B-Text2Image"
|
50 |
+
|
51 |
+
# Load model - much simpler with 70GB VRAM!
|
52 |
+
self.pipe = DiffusionPipeline.from_pretrained(
|
53 |
+
model_id,
|
54 |
+
torch_dtype=torch.bfloat16, # Use bfloat16 for better performance
|
55 |
+
device_map="auto",
|
56 |
+
use_safetensors=True,
|
57 |
+
trust_remote_code=True
|
58 |
)
|
59 |
+
|
60 |
+
progress(0.7, desc="โก Optimizing for H200...")
|
61 |
+
|
62 |
+
# Move to GPU
|
63 |
+
if torch.cuda.is_available():
|
64 |
+
self.pipe = self.pipe.to(device)
|
65 |
+
|
66 |
+
# Enable optimizations (optional with 70GB VRAM, but still good for speed)
|
67 |
+
try:
|
68 |
+
self.pipe.enable_attention_slicing()
|
69 |
+
print("โ
Attention slicing enabled")
|
70 |
+
except:
|
71 |
+
pass
|
72 |
+
|
73 |
+
try:
|
74 |
+
self.pipe.enable_xformers_memory_efficient_attention()
|
75 |
+
print("โ
xformers enabled")
|
76 |
+
except:
|
77 |
+
print("๐ xformers not available (optional)")
|
78 |
+
|
79 |
+
# Compile model for faster inference (optional)
|
80 |
+
try:
|
81 |
+
if hasattr(self.pipe, 'unet'):
|
82 |
+
self.pipe.unet = torch.compile(self.pipe.unet, mode="reduce-overhead", fullgraph=True)
|
83 |
+
print("โ
Model compiled for faster inference")
|
84 |
+
except:
|
85 |
+
print("๐ Model compilation not available (optional)")
|
86 |
+
|
87 |
+
progress(0.9, desc="๐ Finalizing...")
|
88 |
+
|
89 |
+
self.model_loaded = True
|
90 |
+
torch.cuda.empty_cache()
|
91 |
+
|
92 |
+
progress(1.0, desc="โ
Ready!")
|
93 |
+
return "โ
Model loaded successfully on ZeroGPU H200!", self.get_memory_info()
|
94 |
+
|
95 |
+
except Exception as e:
|
96 |
+
self.model_loaded = False
|
97 |
+
error_msg = str(e)
|
98 |
+
if "401" in error_msg or "restricted" in error_msg:
|
99 |
+
return "โ Access denied. Please ensure the model is publicly accessible.", self.get_memory_info()
|
100 |
+
return f"โ Error loading model: {error_msg}", self.get_memory_info()
|
101 |
+
|
102 |
+
def unload_model(self):
|
103 |
+
"""Unload model"""
|
104 |
+
if self.pipe is not None:
|
105 |
+
del self.pipe
|
106 |
+
self.pipe = None
|
107 |
+
|
108 |
+
self.model_loaded = False
|
109 |
+
torch.cuda.empty_cache()
|
110 |
+
gc.collect()
|
111 |
+
|
112 |
+
return "โ
Model unloaded!", self.get_memory_info()
|
113 |
+
|
114 |
+
@spaces.GPU(duration=120) # 2 minutes for generation
|
115 |
+
def generate_image(self, prompt, negative_prompt="", num_steps=25, guidance_scale=7.5,
|
116 |
+
seed=-1, width=1024, height=1024, progress=gr.Progress()):
|
117 |
+
"""Generate image with ZeroGPU H200"""
|
118 |
+
if not self.model_loaded or self.pipe is None:
|
119 |
+
return None, "โ Please load the model first!", self.get_memory_info()
|
120 |
+
|
121 |
+
try:
|
122 |
+
progress(0.1, desc="๐จ Preparing generation...")
|
123 |
+
|
124 |
+
# With 70GB VRAM, we can use much larger resolutions!
|
125 |
+
max_pixels = 2048 * 2048 # 4MP max for reasonable generation times
|
126 |
+
current_pixels = width * height
|
127 |
+
|
128 |
+
if current_pixels > max_pixels:
|
129 |
+
# Scale down proportionally
|
130 |
+
scale = (max_pixels / current_pixels) ** 0.5
|
131 |
+
width = int(width * scale)
|
132 |
+
height = int(height * scale)
|
133 |
+
# Round to nearest 64 for compatibility
|
134 |
+
width = (width // 64) * 64
|
135 |
+
height = (height // 64) * 64
|
136 |
+
size_msg = f"๐ Scaled to {width}x{height} for optimal performance"
|
137 |
+
else:
|
138 |
+
size_msg = f"๐ Generating at {width}x{height}"
|
139 |
+
|
140 |
+
# Set seed for reproducibility
|
141 |
+
generator = None
|
142 |
+
if seed != -1:
|
143 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
144 |
+
|
145 |
+
progress(0.3, desc=f"๐จ Generating {width}x{height} image...")
|
146 |
+
|
147 |
+
print(f"๐จ Generating: {width}x{height}, {num_steps} steps, guidance: {guidance_scale}")
|
148 |
+
|
149 |
+
# Generate with the powerful H200!
|
150 |
+
with torch.inference_mode():
|
151 |
+
result = self.pipe(
|
152 |
+
prompt=prompt,
|
153 |
+
negative_prompt=negative_prompt if negative_prompt else None,
|
154 |
+
num_inference_steps=num_steps,
|
155 |
+
guidance_scale=guidance_scale,
|
156 |
+
height=height,
|
157 |
+
width=width,
|
158 |
+
generator=generator,
|
159 |
+
output_type="pil"
|
160 |
)
|
161 |
+
|
162 |
+
progress(0.9, desc="๐ Finalizing...")
|
163 |
+
|
164 |
+
# Extract image
|
165 |
+
if hasattr(result, 'images'):
|
166 |
+
image = result.images[0]
|
167 |
+
elif isinstance(result, list):
|
168 |
+
image = result[0]
|
169 |
+
else:
|
170 |
+
image = result
|
171 |
+
|
172 |
+
# Cleanup
|
173 |
+
del result
|
174 |
+
torch.cuda.empty_cache()
|
175 |
+
|
176 |
+
progress(1.0, desc="โ
Complete!")
|
177 |
+
return image, f"โ
Generated successfully! {size_msg}", self.get_memory_info()
|
178 |
+
|
179 |
+
except Exception as e:
|
180 |
+
torch.cuda.empty_cache()
|
181 |
+
return None, f"โ Generation failed: {str(e)}", self.get_memory_info()
|
182 |
|
183 |
+
# Initialize app
|
184 |
+
app = CosmosZeroGPUApp()
|
|
|
|
|
|
|
|
|
|
|
185 |
|
186 |
+
# Create Gradio interface
|
187 |
+
def create_interface():
|
188 |
+
with gr.Blocks(title="Cosmos-Predict2 ZeroGPU", theme=gr.themes.Soft()) as interface:
|
189 |
+
gr.Markdown("""
|
190 |
+
# ๐ Cosmos-Predict2 on ZeroGPU
|
191 |
+
**Powered by NVIDIA H200 with 70GB VRAM โข High-resolution generation โข Fast inference**
|
192 |
+
|
193 |
+
This Space uses ZeroGPU for efficient GPU allocation. The GPU is assigned when you load the model or generate images.
|
194 |
+
""")
|
195 |
+
|
196 |
+
# Memory status
|
197 |
+
memory_display = gr.Textbox(
|
198 |
+
label="๐ GPU Status",
|
199 |
+
value=app.get_memory_info(),
|
200 |
+
interactive=False
|
201 |
+
)
|
202 |
+
|
203 |
+
with gr.Row():
|
204 |
+
with gr.Column():
|
205 |
+
# Model management
|
206 |
+
gr.Markdown("### ๐ฎ Model Management")
|
207 |
+
|
208 |
+
with gr.Row():
|
209 |
+
load_btn = gr.Button("๐ Load Model", variant="primary", size="lg")
|
210 |
+
unload_btn = gr.Button("๐๏ธ Unload", variant="secondary")
|
211 |
+
|
212 |
+
model_status = gr.Textbox(label="Model Status", interactive=False)
|
213 |
+
|
214 |
+
# Generation settings
|
215 |
+
gr.Markdown("### ๐จ Generation Settings")
|
216 |
+
|
217 |
+
prompt = gr.Textbox(
|
218 |
+
label="Prompt",
|
219 |
+
placeholder="A futuristic robot in a high-tech laboratory with holographic displays...",
|
220 |
+
lines=3
|
221 |
)
|
222 |
+
|
223 |
+
negative_prompt = gr.Textbox(
|
224 |
+
label="Negative Prompt (Optional)",
|
225 |
+
placeholder="blurry, low quality, distorted, ugly, deformed...",
|
226 |
+
lines=2
|
|
|
|
|
227 |
)
|
228 |
+
|
229 |
+
with gr.Row():
|
230 |
+
steps = gr.Slider(10, 50, value=25, step=5, label="Inference Steps")
|
231 |
+
guidance = gr.Slider(1, 15, value=7.5, step=0.5, label="Guidance Scale")
|
232 |
+
|
233 |
+
with gr.Row():
|
234 |
+
width = gr.Slider(512, 2048, value=1024, step=64, label="Width")
|
235 |
+
height = gr.Slider(512, 2048, value=1024, step=64, label="Height")
|
236 |
+
|
237 |
+
seed = gr.Number(label="Seed (-1 = random)", value=-1, precision=0)
|
238 |
+
|
239 |
+
generate_btn = gr.Button("๐จ Generate Image", variant="primary", size="lg")
|
240 |
+
|
241 |
+
with gr.Column():
|
242 |
+
# Output
|
243 |
+
output_image = gr.Image(label="Generated Image", height=600)
|
244 |
+
generation_status = gr.Textbox(label="Generation Status", interactive=False)
|
245 |
+
|
246 |
+
# ZeroGPU info
|
247 |
+
gr.Markdown("""
|
248 |
+
### ๐ก ZeroGPU Features:
|
249 |
+
- **70GB VRAM**: Generate high-resolution images up to 2048x2048
|
250 |
+
- **Dynamic allocation**: GPU assigned only when needed
|
251 |
+
- **H200 powered**: Latest NVIDIA architecture for fast inference
|
252 |
+
- **Free to use**: Available to all users (PRO users get higher priority)
|
253 |
+
- **Auto-optimization**: Model compilation and memory efficiency
|
254 |
+
""")
|
255 |
+
|
256 |
+
# Event handlers
|
257 |
+
load_btn.click(
|
258 |
+
app.load_model,
|
259 |
+
outputs=[model_status, memory_display]
|
260 |
+
)
|
261 |
+
|
262 |
+
unload_btn.click(
|
263 |
+
app.unload_model,
|
264 |
+
outputs=[model_status, memory_display]
|
265 |
+
)
|
266 |
+
|
267 |
+
generate_btn.click(
|
268 |
+
app.generate_image,
|
269 |
+
inputs=[prompt, negative_prompt, steps, guidance, seed, width, height],
|
270 |
+
outputs=[output_image, generation_status, memory_display]
|
271 |
+
)
|
272 |
+
|
273 |
+
# Auto-refresh memory status
|
274 |
+
def refresh_memory():
|
275 |
+
return app.get_memory_info()
|
276 |
+
|
277 |
+
# Update memory display every 10 seconds
|
278 |
+
gr.Timer(value=10).tick(refresh_memory, outputs=[memory_display])
|
279 |
+
|
280 |
+
# Examples optimized for high-resolution
|
281 |
+
gr.Examples(
|
282 |
+
examples=[
|
283 |
+
["A detailed cyberpunk cityscape at night with neon signs, flying cars, and holographic advertisements, highly detailed, 8k resolution"],
|
284 |
+
["A majestic dragon soaring through storm clouds with lightning, fantasy art, dramatic lighting, ultra detailed"],
|
285 |
+
["A futuristic space station orbiting Earth, with solar panels and docking bays, sci-fi concept art, cinematic"],
|
286 |
+
["A serene Japanese garden with cherry blossoms, koi pond, and traditional architecture, peaceful atmosphere, masterpiece"],
|
287 |
+
["A steampunk mechanical owl with brass gears and copper pipes, intricate details, vintage engineering"],
|
288 |
+
["An underwater city with bioluminescent coral and glass domes, marine life swimming around, fantasy architecture"]
|
289 |
+
],
|
290 |
+
inputs=[prompt],
|
291 |
+
label="๐จ Example Prompts (optimized for high-resolution generation)"
|
292 |
+
)
|
293 |
+
|
294 |
+
# Usage tips
|
295 |
+
gr.Markdown("""
|
296 |
+
### ๐ Usage Tips:
|
297 |
+
1. **First time**: Click "Load Model" to download and initialize Cosmos-Predict2
|
298 |
+
2. **High-res**: Try resolutions up to 2048x2048 with the powerful H200 GPU
|
299 |
+
3. **Quality**: Use 25-30 steps for high quality, 15-20 for faster generation
|
300 |
+
4. **Prompts**: Be descriptive and specific for best results
|
301 |
+
5. **Negative prompts**: Help avoid unwanted elements in your images
|
302 |
+
""")
|
303 |
+
|
304 |
+
return interface
|
305 |
|
306 |
if __name__ == "__main__":
|
307 |
+
print("๐ Starting Cosmos-Predict2 ZeroGPU Space...")
|
308 |
+
|
309 |
+
interface = create_interface()
|
310 |
+
interface.launch()
|