File size: 3,390 Bytes
876b664
 
 
 
75a5574
3fe250d
75a5574
 
 
 
 
 
 
3fe250d
75a5574
 
 
876b664
 
 
a04510d
876b664
 
75a5574
 
 
 
 
6990ec5
75a5574
 
 
 
 
3fe250d
75a5574
3fe250d
75a5574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
876b664
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import time
import utilities as u
import card_generator as card
from PIL import Image
import fal_client
from pathlib import Path
import tempfile
import os
import base64
import io
import logging
import requests
import json

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

start_time = time.time()
temp_image_path = "./image_temp/"



def preview_and_generate_image(num_images, sd_prompt, user_input_template):
    print(f"num_images: {num_images}")
    print(f"sd_prompt: {sd_prompt}")
    print(f"user_input_template: {user_input_template}")
    num_images = int(4)
    sd_prompt = f"magnum opus, blank card, no text, blank textbox at top for title, mid for details and bottom for description, detailed high quality animal properties borders, {sd_prompt}"
    try:
        # Save the image to a temporary file
        with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
            user_input_template[0].save(temp_file.name, format="PNG")
            temp_path = temp_file.name

        logger.info(f"Image saved to temporary file: {temp_path}")

        # Upload the file using fal_client
        url = fal_client.upload_file(temp_path)
        logger.info(f"Image uploaded. URL: {url}")

        # Remove the temporary file
        os.unlink(temp_path)

        request_handle = fal_client.submit(
            "fal-ai/flux-lora/image-to-image",
            arguments={
                "num_inference_steps": 35,
                "prompt": sd_prompt,
                "num_images": num_images,
                "image_url": url,
                "strength": 0.85
            }
        )
        
        logger.info(f"Type of request_handle: {type(request_handle)}")
        logger.info(f"Content of request_handle: {request_handle}")
        
        # Get the result from the SyncRequestHandle
        result = request_handle.get()
        
        logger.info(f"Type of result: {type(result)}")
        logger.info(f"Content of result: {json.dumps(result, indent=2)}")
        
        # Extract the image URLs from the result
        image_urls = [img['url'] for img in result.get('images', [])]
        
        logger.info(f"Extracted image URLs: {image_urls}")
        
        if not image_urls:
            logger.warning("No images were generated.")
            return []
        
        # Download and process the images
        images = []
        for i, url in enumerate(image_urls):
            try:
                response = requests.get(url)
                response.raise_for_status()  # Raises an HTTPError for bad responses
                img = Image.open(io.BytesIO(response.content))
                images.append((img, f"Generated Image {i+1}"))  # Add a tuple with image and caption
                logger.info(f"Successfully downloaded and processed image {i+1}")
            except Exception as e:
                logger.error(f"Error processing image {i+1} from URL {url}: {str(e)}")
        
        if not images:
            logger.warning("No images could be downloaded and processed.")
            return []
        
        logger.info(f"Returning {len(images)} processed images")
        return images
    
    except Exception as e:
        logger.error(f"Error during API call or processing: {str(e)}")
        logger.exception("Full traceback:")
        return []