Spaces:
Runtime error
Runtime error
Update llava_llama3/serve/cli.py
Browse files- llava_llama3/serve/cli.py +44 -35
llava_llama3/serve/cli.py
CHANGED
|
@@ -26,58 +26,67 @@ def load_image(image_file):
|
|
| 26 |
return image
|
| 27 |
|
| 28 |
|
| 29 |
-
def chat_llava(args, image_file, text, tokenizer, model,
|
| 30 |
# Model
|
| 31 |
disable_torch_init()
|
| 32 |
|
| 33 |
conv = conv_templates[args.conv_mode].copy()
|
| 34 |
roles = conv.roles
|
| 35 |
|
| 36 |
-
print(f"\033[91m{image_file}, {type(image_file)}\033[0m")
|
| 37 |
-
image = load_image(image_file)
|
| 38 |
-
print(f"\033[91m{image}, {type(image)}\033[0m")
|
| 39 |
-
|
| 40 |
-
image_size = image.size
|
| 41 |
-
image_tensor = process_images([image], image_processor, model.config)
|
| 42 |
-
if type(image_tensor) is list:
|
| 43 |
-
image_tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor]
|
| 44 |
-
else:
|
| 45 |
-
image_tensor = image_tensor.to(model.device, dtype=torch.float16)
|
| 46 |
-
|
| 47 |
inp = text
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
if model.config.mm_use_im_start_end:
|
| 54 |
inp = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + inp
|
| 55 |
else:
|
| 56 |
inp = DEFAULT_IMAGE_TOKEN + '\n' + inp
|
| 57 |
-
image = None
|
| 58 |
-
|
| 59 |
-
conv.append_message(conv.roles[0], inp)
|
| 60 |
-
conv.append_message(conv.roles[1], None)
|
| 61 |
-
prompt = conv.get_prompt()
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
outputs = tokenizer.decode(output_ids[0]).strip()
|
| 80 |
conv.messages[-1][-1] = outputs
|
| 81 |
|
| 82 |
# Return the model's output as a string
|
|
|
|
| 83 |
return outputs.replace('<|end_of_text|>', '\n').lstrip()
|
|
|
|
| 26 |
return image
|
| 27 |
|
| 28 |
|
| 29 |
+
def chat_llava(args, image_file, text, tokenizer, model, image_processor, context_len, streamer=None):
|
| 30 |
# Model
|
| 31 |
disable_torch_init()
|
| 32 |
|
| 33 |
conv = conv_templates[args.conv_mode].copy()
|
| 34 |
roles = conv.roles
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
inp = text
|
| 37 |
|
| 38 |
+
if image_file is not None:
|
| 39 |
+
print(image_file, type(image_file))
|
| 40 |
+
image = load_image(image_file)
|
| 41 |
+
print(image, type(image))
|
| 42 |
+
image_size = image.size
|
| 43 |
+
image_tensor = process_images([image], image_processor, model.config)
|
| 44 |
+
if type(image_tensor) is list:
|
| 45 |
+
image_tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor]
|
| 46 |
+
else:
|
| 47 |
+
image_tensor = image_tensor.to(model.device, dtype=torch.float16)
|
| 48 |
+
|
| 49 |
if model.config.mm_use_im_start_end:
|
| 50 |
inp = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + inp
|
| 51 |
else:
|
| 52 |
inp = DEFAULT_IMAGE_TOKEN + '\n' + inp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
+
conv.append_message(conv.roles[0], inp)
|
| 55 |
+
conv.append_message(conv.roles[1], None)
|
| 56 |
+
prompt = conv.get_prompt()
|
| 57 |
+
|
| 58 |
+
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
|
| 59 |
+
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
| 60 |
+
keywords = [stop_str]
|
| 61 |
|
| 62 |
+
with torch.inference_mode():
|
| 63 |
+
output_ids = model.generate(
|
| 64 |
+
input_ids,
|
| 65 |
+
images=image_tensor,
|
| 66 |
+
image_sizes=[image_size],
|
| 67 |
+
do_sample=True if args.temperature > 0 else False,
|
| 68 |
+
temperature=args.temperature,
|
| 69 |
+
max_new_tokens=args.max_new_tokens,
|
| 70 |
+
streamer=streamer,
|
| 71 |
+
use_cache=True)
|
| 72 |
+
else:
|
| 73 |
+
conv.append_message(conv.roles[0], inp)
|
| 74 |
+
conv.append_message(conv.roles[1], None)
|
| 75 |
+
prompt = conv.get_prompt()
|
| 76 |
+
|
| 77 |
+
input_ids = tokenizer(prompt, return_tensors='pt').input_ids.to(model.device)
|
| 78 |
+
|
| 79 |
+
with torch.inference_mode():
|
| 80 |
+
output_ids = model.generate(
|
| 81 |
+
input_ids,
|
| 82 |
+
do_sample=True if args.temperature > 0 else False,
|
| 83 |
+
temperature=args.temperature,
|
| 84 |
+
max_new_tokens=args.max_new_tokens,
|
| 85 |
+
use_cache=True)
|
| 86 |
|
| 87 |
outputs = tokenizer.decode(output_ids[0]).strip()
|
| 88 |
conv.messages[-1][-1] = outputs
|
| 89 |
|
| 90 |
# Return the model's output as a string
|
| 91 |
+
# return outputs
|
| 92 |
return outputs.replace('<|end_of_text|>', '\n').lstrip()
|