File size: 2,512 Bytes
d8b357d
 
 
 
 
 
0e99818
 
d8b357d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import streamlit as st
from huggingface_hub import InferenceClient
import os

client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")

# Setze einen Standardwert, falls SECRET_PROMPT nicht gesetzt ist
secret_prompt = os.getenv("SECRET_PROMPT", "Default prompt: ")

def format_prompt(message, history):
    prompt = secret_prompt
    for user_prompt, bot_response in history:
        prompt += f"[INST] {user_prompt} [/INST]"
        prompt += f" {bot_response}</s> "
    prompt += f"[INST] {message} [/INST]"
    return prompt

def generate(prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0):
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )

    formatted_prompt = format_prompt(prompt, history)

    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""

    for response in stream:
        output += response.token.text
        yield output
    return output

st.title("Einfach.Mistral 7B v0.3")

history = []

with st.sidebar:
    temperature = st.slider(
        "Temperature",
        value=0.9,
        min_value=0.0,
        max_value=1.0,
        step=0.05,
        help="Higher values produce more diverse outputs",
    )
    max_new_tokens = st.slider(
        "Max new tokens",
        value=256,
        min_value=0,
        max_value=1048,
        step=64,
        help="The maximum numbers of new tokens",
    )
    top_p = st.slider(
        "Top-p (nucleus sampling)",
        value=0.90,
        min_value=0.0,
        max_value=1.0,
        step=0.05,
        help="Higher values sample more low-probability tokens",
    )
    repetition_penalty = st.slider(
        "Repetition penalty",
        value=1.2,
        min_value=1.0,
        max_value=2.0,
        step=0.05,
        help="Penalize repeated tokens",
    )

message = st.text_input("Your message:", "")

if st.button("Generate"):
    if message:
        for output in generate(message, history, temperature, max_new_tokens, top_p, repetition_penalty):
            st.text_area("Generated Text", value=output, height=400)
        history.append((message, output))
    else:
        st.warning("Please enter a message.")