Spaces:
Build error
Build error
File size: 8,687 Bytes
59f9119 e0a06d3 59f9119 e0a06d3 59f9119 e0a06d3 59f9119 e0a06d3 59f9119 9236c5b e0a06d3 59f9119 e0a06d3 59f9119 c7fd1ca e0a06d3 59f9119 e0a06d3 59f9119 e0a06d3 59f9119 e0a06d3 59f9119 e0a06d3 3b01a7f e0a06d3 59f9119 e0a06d3 59f9119 e0a06d3 59f9119 e0a06d3 59f9119 e0a06d3 59f9119 e0a06d3 59f9119 e0a06d3 59f9119 e0a06d3 59f9119 e0a06d3 59f9119 e0a06d3 59f9119 e0a06d3 59f9119 e0a06d3 59f9119 e0a06d3 59f9119 e0a06d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
import uvicorn
from fastapi import FastAPI, UploadFile, File, HTTPException
from fastapi.staticfiles import StaticFiles
import hashlib
import os
from enum import Enum
from paddleocr import PaddleOCR
from PIL import Image
import io
import numpy as np
from typing import Optional
app = FastAPI(docs_url='/')
# 确保输出目录存在
output_dir = 'output'
os.makedirs(output_dir, exist_ok=True)
class LangEnum(str, Enum):
ch = "ch"
en = "en"
japan = "japan"
korean = "korean"
chinese_cht = "chinese_cht"
fr = "fr"
de = "de"
# OCR 实例缓存
ocr_cache = {}
def get_ocr_instance(lang: str = "ch", use_gpu: bool = False):
"""获取OCR实例,使用PP-OCRv5模型"""
cache_key = f"v5_{lang}_{use_gpu}"
if cache_key not in ocr_cache:
# 使用PaddleOCR 3.0的新API + PP-OCRv5模型
ocr_cache[cache_key] = PaddleOCR(
ocr_version="PP-OCRv5", # 指定使用PP-OCRv5版本
lang=lang,
text_detection_model_name="PP-OCRv5_server_det", # 使用server版本检测模型
text_recognition_model_name="PP-OCRv5_server_rec", # 使用server版本识别模型
use_doc_orientation_classify=False, # 关闭文档方向分类
use_doc_unwarping=False, # 关闭文档矫正
use_textline_orientation=False, # 关闭文本行方向分类
device="gpu" if use_gpu else "cpu"
)
return ocr_cache[cache_key]
def validate_image(file: UploadFile):
"""验证上传的文件"""
if not file.content_type or not file.content_type.startswith('image/'):
raise HTTPException(status_code=400, detail="文件必须是图片格式")
# 检查文件大小 (最大10MB)
if hasattr(file, 'size') and file.size and file.size > 10 * 1024 * 1024:
raise HTTPException(status_code=400, detail="图片文件大小不能超过10MB")
@app.post("/ocr")
async def ocr_recognition(
file: UploadFile = File(...),
lang: LangEnum = LangEnum.ch,
use_gpu: bool = False
):
"""PP-OCRv5文字识别 - 支持5种文字类型的单模型"""
try:
validate_image(file)
contents = await file.read()
if not contents:
raise HTTPException(status_code=400, detail="文件内容为空")
# 转换图片格式
image = Image.open(io.BytesIO(contents))
if image.mode != 'RGB':
image = image.convert('RGB')
# 获取OCR实例
ocr = get_ocr_instance(lang=lang, use_gpu=use_gpu)
# 转换为numpy数组进行识别
img_array = np.array(image)
# 使用PP-OCRv5进行识别
results = ocr.predict(img_array)
if not results or len(results) == 0:
return {
"success": True,
"message": "未检测到文字",
"model_version": "PP-OCRv5",
"language": lang,
"count": 0,
"results": []
}
# 处理识别结果
result = results[0] # 取第一个结果
# 提取结果信息
ocr_results = []
if hasattr(result, 'json') and result.json:
# 从result.json中提取信息
result_data = result.json
rec_texts = result_data.get('rec_texts', [])
rec_scores = result_data.get('rec_scores', [])
dt_polys = result_data.get('dt_polys', [])
for i, (text, score, poly) in enumerate(zip(rec_texts, rec_scores, dt_polys)):
ocr_results.append({
"id": i,
"text": text,
"confidence": round(float(score), 4),
"bbox": poly.tolist() if hasattr(poly, 'tolist') else poly
})
return {
"success": True,
"model_version": "PP-OCRv5",
"language": lang,
"count": len(ocr_results),
"results": ocr_results
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"OCR识别失败: {str(e)}")
@app.post("/ocr_table")
async def table_recognition(
file: UploadFile = File(...),
lang: LangEnum = LangEnum.ch,
use_gpu: bool = False
):
"""PP-StructureV3表格识别"""
try:
validate_image(file)
contents = await file.read()
if not contents:
raise HTTPException(status_code=400, detail="文件内容为空")
# 计算文件哈希
file_hash = hashlib.sha256(contents).hexdigest()[:12]
# 转换图片格式
image = Image.open(io.BytesIO(contents))
if image.mode != 'RGB':
image = image.convert('RGB')
# 使用PP-StructureV3进行表格识别
# 这里需要单独的表格识别产线
from paddleocr import PPStructure
# 获取表格识别实例
table_key = f"table_v3_{lang}_{use_gpu}"
if table_key not in ocr_cache:
ocr_cache[table_key] = PPStructure(
table=True,
lang=lang,
device="gpu" if use_gpu else "cpu",
show_log=True
)
table_engine = ocr_cache[table_key]
img_array = np.array(image)
result = table_engine(img_array)
# 保存结果
try:
from paddleocr import save_structure_res
save_structure_res(result, output_dir, file_hash)
except Exception as save_error:
print(f"保存结果文件失败: {save_error}")
# 处理结果
tables = []
images = []
texts = []
for item in result:
item_type = item.get('type', '')
bbox = item.get('bbox', [])
res = item.get('res', {})
if item_type == 'table':
tables.append({
"type": item_type,
"bbox": bbox,
"html": res.get('html', ''),
"confidence": res.get('confidence', 0.0)
})
elif item_type == 'figure':
images.append({
"type": item_type,
"bbox": bbox
})
else:
texts.append({
"type": item_type,
"bbox": bbox,
"text": res.get('text', '') if isinstance(res, dict) else str(res)
})
return {
"success": True,
"model_version": "PP-StructureV3",
"language": lang,
"hash": file_hash,
"summary": {
"total_elements": len(result),
"tables": len(tables),
"images": len(images),
"texts": len(texts)
},
"tables": tables,
"images": images,
"texts": texts
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"表格识别失败: {str(e)}")
@app.get("/health")
async def health_check():
"""健康检查接口"""
return {
"status": "healthy",
"ocr_version": "PP-OCRv5",
"structure_version": "PP-StructureV3",
"cache_instances": len(ocr_cache),
"supported_languages": [lang.value for lang in LangEnum]
}
@app.get("/models")
async def get_model_info():
"""获取模型信息"""
return {
"ocr_models": {
"PP-OCRv5_server_det": "高精度文本检测模型",
"PP-OCRv5_server_rec": "高精度文本识别模型 - 支持中英日韩繁5种文字类型"
},
"structure_models": {
"PP-StructureV3": "通用文档解析方案 - 支持表格、图像、文本混合识别"
},
"features": {
"multi_language": "单模型支持5种文字类型",
"handwriting": "显著提升手写体识别能力",
"accuracy_improvement": "相比PP-OCRv4提升13个百分点"
}
}
@app.get("/")
async def root():
"""根路径"""
return {
"message": "PP-OCRv5 OCR API 服务正常运行",
"version": "3.0",
"models": "PP-OCRv5 + PP-StructureV3",
"docs": "/docs"
}
# 挂载静态文件服务
app.mount("/output", StaticFiles(directory=output_dir, follow_symlink=True, html=True), name="output")
if __name__ == '__main__':
uvicorn.run(app=app, host="0.0.0.0", port=7860) |