Spaces:
Sleeping
Sleeping
| import gradio | |
| import numpy | |
| from pathlib import Path | |
| from PIL import Image | |
| from fastai.vision.all import load_learner, PILImage, PILMask | |
| MODEL_PATH = Path('.') / 'models' | |
| TEST_IMAGES_PATH = Path('.') / 'test' | |
| def preprocess_mask(file_name): | |
| """Ensures masks are in grayscale format and removes transparency.""" | |
| mask_path = Path('/kaggle/input/car-segmentation/car-segmentation/masks') / file_name.name | |
| mask = Image.open(mask_path) | |
| # Convert palette-based images to RGBA first to ensure proper color interpretation | |
| if mask.mode == 'P': | |
| mask = mask.convert('RGBA') | |
| # Convert any non-RGBA images to RGBA | |
| if mask.mode != 'RGBA': | |
| mask = mask.convert('RGBA') | |
| mask_data = mask.getdata() | |
| # Replace fully transparent pixels with black (or another valid label) | |
| new_mask_data = [ | |
| (r, g, b, 255) if a > 0 else (0, 0, 0, 255) # Ensure full opacity in new mask | |
| for r, g, b, a in mask_data | |
| ] | |
| mask.putdata(new_mask_data) | |
| # Convert to grayscale after handling transparency | |
| return PILMask.create(mask.convert('L')) | |
| LEARNER = load_learner(MODEL_PATH / 'car-segmentation_v1.pkl') | |
| def segment_image(image): | |
| image = PILImage.create(image) | |
| prediction, _, _ = LEARNER.predict(image) | |
| return numpy.array(prediction) | |
| demo = gradio.Interface( | |
| segment_image, | |
| inputs=gradio.Image(type='pil'), | |
| outputs=gradio.Image(type='numpy'), | |
| examples=[str(image) for image in TEST_IMAGES_PATH.iterdir()] | |
| ) | |
| demo.launch() | |