Spaces:
Running
on
L40S
Running
on
L40S
updated
Browse files
app.py
CHANGED
@@ -6,24 +6,38 @@ import random
|
|
6 |
import os
|
7 |
import tempfile
|
8 |
import soundfile as sf
|
|
|
9 |
|
10 |
os.environ['ELASTIC_LOG_LEVEL'] = 'DEBUG'
|
11 |
from transformers import AutoProcessor, pipeline
|
12 |
from elastic_models.transformers import MusicgenForConditionalGeneration
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
23 |
|
24 |
|
25 |
def cleanup_gpu():
|
26 |
-
"""Clean up GPU memory to avoid TensorRT conflicts."""
|
27 |
if torch.cuda.is_available():
|
28 |
torch.cuda.empty_cache()
|
29 |
torch.cuda.synchronize()
|
@@ -31,7 +45,6 @@ def cleanup_gpu():
|
|
31 |
|
32 |
|
33 |
def cleanup_temp_files():
|
34 |
-
"""Clean up old temporary audio files."""
|
35 |
import glob
|
36 |
import time
|
37 |
temp_dir = tempfile.gettempdir()
|
@@ -47,6 +60,8 @@ def cleanup_temp_files():
|
|
47 |
|
48 |
_generator = None
|
49 |
_processor = None
|
|
|
|
|
50 |
|
51 |
|
52 |
def load_model():
|
@@ -88,6 +103,43 @@ def load_model():
|
|
88 |
return _generator, _processor
|
89 |
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
def calculate_max_tokens(duration_seconds):
|
92 |
token_rate = 50
|
93 |
max_new_tokens = int(duration_seconds * token_rate)
|
@@ -107,7 +159,7 @@ def generate_music(text_prompt, duration=10, guidance_scale=3.0):
|
|
107 |
cleanup_gpu()
|
108 |
|
109 |
import time
|
110 |
-
set_seed(42)
|
111 |
print(f"[GENERATION] Using seed: {42}")
|
112 |
|
113 |
max_new_tokens = calculate_max_tokens(duration)
|
@@ -160,9 +212,9 @@ def generate_music(text_prompt, duration=10, guidance_scale=3.0):
|
|
160 |
|
161 |
max_val = np.max(np.abs(audio_data))
|
162 |
if max_val > 0:
|
163 |
-
audio_data = audio_data / max_val * 0.95
|
164 |
|
165 |
-
audio_data = (audio_data * 32767).astype(np.int16)
|
166 |
|
167 |
print(f"[GENERATION] Final audio shape: {audio_data.shape}")
|
168 |
print(f"[GENERATION] Audio range: [{np.min(audio_data)}, {np.max(audio_data)}]")
|
@@ -180,6 +232,7 @@ def generate_music(text_prompt, duration=10, guidance_scale=3.0):
|
|
180 |
print(f"[GENERATION] Audio saved to: {temp_path}")
|
181 |
print(f"[GENERATION] File size: {file_size} bytes")
|
182 |
|
|
|
183 |
print(f"[GENERATION] Returning numpy tuple: ({sample_rate}, audio_array)")
|
184 |
return (sample_rate, audio_data)
|
185 |
else:
|
@@ -192,56 +245,205 @@ def generate_music(text_prompt, duration=10, guidance_scale=3.0):
|
|
192 |
return None
|
193 |
|
194 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
with gr.Blocks(title="MusicGen Large - Music Generation") as demo:
|
196 |
gr.Markdown("# π΅ MusicGen Large Music Generator")
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
)
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
label="Duration (seconds)"
|
215 |
-
)
|
216 |
-
guidance_scale = gr.Slider(
|
217 |
-
minimum=1.0,
|
218 |
-
maximum=10.0,
|
219 |
-
value=3.0,
|
220 |
-
step=0.5,
|
221 |
-
label="Guidance Scale",
|
222 |
-
info="Higher values follow prompt more closely"
|
223 |
-
)
|
224 |
-
|
225 |
-
generate_btn = gr.Button("π΅ Generate Music", variant="primary", size="lg")
|
226 |
-
|
227 |
-
with gr.Column():
|
228 |
-
audio_output = gr.Audio(
|
229 |
-
label="Generated Music",
|
230 |
-
type="numpy"
|
231 |
)
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
|
241 |
generate_btn.click(
|
242 |
-
fn=
|
243 |
inputs=[text_input, duration, guidance_scale],
|
244 |
-
outputs=
|
245 |
show_progress=True
|
246 |
)
|
247 |
|
|
|
6 |
import os
|
7 |
import tempfile
|
8 |
import soundfile as sf
|
9 |
+
import time
|
10 |
|
11 |
os.environ['ELASTIC_LOG_LEVEL'] = 'DEBUG'
|
12 |
from transformers import AutoProcessor, pipeline
|
13 |
from elastic_models.transformers import MusicgenForConditionalGeneration
|
14 |
|
15 |
+
MODEL_CONFIG = {
|
16 |
+
'cost_per_hour': 1.8, # $1.8 per hour on L40S
|
17 |
+
'cost_savings_1000h': {
|
18 |
+
'savings_dollars': 8.4, # $8.4 saved per 1000 hours
|
19 |
+
'savings_percent': 74.9, # 74.9% savings
|
20 |
+
'compressed_cost': 2.8, # $2.8 for compressed
|
21 |
+
'original_cost': 11.3, # $11.3 for original
|
22 |
+
},
|
23 |
+
'batch_mode': True,
|
24 |
+
'batch_size': 2 # Number of variants to generate (2, 4, 6, etc.)
|
25 |
+
}
|
26 |
|
27 |
+
original_time_cache = {"original_time": 22.57}
|
28 |
+
|
29 |
+
|
30 |
+
# def set_seed(seed: int = 42):
|
31 |
+
# random.seed(seed)
|
32 |
+
# np.random.seed(seed)
|
33 |
+
# torch.manual_seed(seed)
|
34 |
+
# torch.cuda.manual_seed(seed)
|
35 |
+
# torch.cuda.manual_seed_all(seed)
|
36 |
+
# torch.backends.cudnn.deterministic = True
|
37 |
+
# torch.backends.cudnn.benchmark = False
|
38 |
|
39 |
|
40 |
def cleanup_gpu():
|
|
|
41 |
if torch.cuda.is_available():
|
42 |
torch.cuda.empty_cache()
|
43 |
torch.cuda.synchronize()
|
|
|
45 |
|
46 |
|
47 |
def cleanup_temp_files():
|
|
|
48 |
import glob
|
49 |
import time
|
50 |
temp_dir = tempfile.gettempdir()
|
|
|
60 |
|
61 |
_generator = None
|
62 |
_processor = None
|
63 |
+
_original_generator = None
|
64 |
+
_original_processor = None
|
65 |
|
66 |
|
67 |
def load_model():
|
|
|
103 |
return _generator, _processor
|
104 |
|
105 |
|
106 |
+
def load_original_model():
|
107 |
+
global _original_generator, _original_processor
|
108 |
+
|
109 |
+
if _original_generator is None:
|
110 |
+
print("[ORIGINAL MODEL] Starting original model initialization...")
|
111 |
+
cleanup_gpu()
|
112 |
+
|
113 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
114 |
+
print(f"[ORIGINAL MODEL] Using device: {device}")
|
115 |
+
|
116 |
+
print("[ORIGINAL MODEL] Loading processor...")
|
117 |
+
_original_processor = AutoProcessor.from_pretrained(
|
118 |
+
"facebook/musicgen-large"
|
119 |
+
)
|
120 |
+
from transformers import MusicgenForConditionalGeneration as HFMusicgenForConditionalGeneration
|
121 |
+
|
122 |
+
print("[ORIGINAL MODEL] Loading original model...")
|
123 |
+
model = HFMusicgenForConditionalGeneration.from_pretrained(
|
124 |
+
"facebook/musicgen-large",
|
125 |
+
torch_dtype=torch.float16,
|
126 |
+
).to(device)
|
127 |
+
|
128 |
+
model.eval()
|
129 |
+
|
130 |
+
print("[ORIGINAL MODEL] Creating pipeline...")
|
131 |
+
_original_generator = pipeline(
|
132 |
+
task="text-to-audio",
|
133 |
+
model=model,
|
134 |
+
tokenizer=_original_processor.tokenizer,
|
135 |
+
device=device,
|
136 |
+
)
|
137 |
+
|
138 |
+
print("[ORIGINAL MODEL] Original model initialization completed successfully")
|
139 |
+
|
140 |
+
return _original_generator, _original_processor
|
141 |
+
|
142 |
+
|
143 |
def calculate_max_tokens(duration_seconds):
|
144 |
token_rate = 50
|
145 |
max_new_tokens = int(duration_seconds * token_rate)
|
|
|
159 |
cleanup_gpu()
|
160 |
|
161 |
import time
|
162 |
+
# set_seed(42)
|
163 |
print(f"[GENERATION] Using seed: {42}")
|
164 |
|
165 |
max_new_tokens = calculate_max_tokens(duration)
|
|
|
212 |
|
213 |
max_val = np.max(np.abs(audio_data))
|
214 |
if max_val > 0:
|
215 |
+
audio_data = audio_data / max_val * 0.95
|
216 |
|
217 |
+
audio_data = (audio_data * 32767).astype(np.int16)
|
218 |
|
219 |
print(f"[GENERATION] Final audio shape: {audio_data.shape}")
|
220 |
print(f"[GENERATION] Audio range: [{np.min(audio_data)}, {np.max(audio_data)}]")
|
|
|
232 |
print(f"[GENERATION] Audio saved to: {temp_path}")
|
233 |
print(f"[GENERATION] File size: {file_size} bytes")
|
234 |
|
235 |
+
# Try returning numpy format instead
|
236 |
print(f"[GENERATION] Returning numpy tuple: ({sample_rate}, audio_array)")
|
237 |
return (sample_rate, audio_data)
|
238 |
else:
|
|
|
245 |
return None
|
246 |
|
247 |
|
248 |
+
def calculate_generation_cost(generation_time_seconds, mode='S'):
|
249 |
+
hours = generation_time_seconds / 3600
|
250 |
+
cost_per_hour = MODEL_CONFIG['cost_per_hour']
|
251 |
+
return hours * cost_per_hour
|
252 |
+
|
253 |
+
|
254 |
+
def calculate_cost_savings(compressed_time, original_time):
|
255 |
+
compressed_cost = calculate_generation_cost(compressed_time, 'S')
|
256 |
+
original_cost = calculate_generation_cost(original_time, 'original')
|
257 |
+
savings = original_cost - compressed_cost
|
258 |
+
savings_percent = (savings / original_cost * 100) if original_cost > 0 else 0
|
259 |
+
return {
|
260 |
+
'compressed_cost': compressed_cost,
|
261 |
+
'original_cost': original_cost,
|
262 |
+
'savings': savings,
|
263 |
+
'savings_percent': savings_percent
|
264 |
+
}
|
265 |
+
|
266 |
+
|
267 |
+
def get_fixed_savings_message():
|
268 |
+
config = MODEL_CONFIG['cost_savings_1000h']
|
269 |
+
return f"π° **Cost Savings for generation batch size 4 on L40S (1000h)**: ${config['savings_dollars']:.1f}" \
|
270 |
+
f" ({config['savings_percent']:.1f}%) - Compressed: ${config['compressed_cost']:.1f} " \
|
271 |
+
f"vs Original: ${config['original_cost']:.1f}"
|
272 |
+
|
273 |
+
|
274 |
+
def get_cache_key(prompt, duration, guidance_scale):
|
275 |
+
return f"{hash(prompt)}_{duration}_{guidance_scale}"
|
276 |
+
|
277 |
+
|
278 |
+
def generate_music_batch(text_prompt, duration=10, guidance_scale=3.0, model_mode="compressed"):
|
279 |
+
try:
|
280 |
+
generator, processor = load_model()
|
281 |
+
model_name = "Compressed (S)"
|
282 |
+
|
283 |
+
print(f"[GENERATION] Starting generation using {model_name} model...")
|
284 |
+
print(f"[GENERATION] Prompt: '{text_prompt}'")
|
285 |
+
print(f"[GENERATION] Duration: {duration}s")
|
286 |
+
print(f"[GENERATION] Guidance scale: {guidance_scale}")
|
287 |
+
print(f"[GENERATION] Batch mode: {MODEL_CONFIG['batch_mode']}")
|
288 |
+
print(f"[GENERATION] Batch size: {MODEL_CONFIG['batch_size']}")
|
289 |
+
|
290 |
+
cleanup_gpu()
|
291 |
+
# set_seed(42)
|
292 |
+
print(f"[GENERATION] Using seed: {42}")
|
293 |
+
|
294 |
+
max_new_tokens = calculate_max_tokens(duration)
|
295 |
+
|
296 |
+
generation_params = {
|
297 |
+
'do_sample': True,
|
298 |
+
'guidance_scale': guidance_scale,
|
299 |
+
'max_new_tokens': max_new_tokens,
|
300 |
+
'min_new_tokens': max_new_tokens,
|
301 |
+
'cache_implementation': 'paged',
|
302 |
+
}
|
303 |
+
|
304 |
+
batch_size = MODEL_CONFIG['batch_size'] if MODEL_CONFIG['batch_mode'] else 1
|
305 |
+
prompts = [text_prompt] * batch_size
|
306 |
+
|
307 |
+
start_time = time.time()
|
308 |
+
outputs = generator(
|
309 |
+
prompts,
|
310 |
+
batch_size=batch_size,
|
311 |
+
generate_kwargs=generation_params
|
312 |
+
)
|
313 |
+
generation_time = time.time() - start_time
|
314 |
+
|
315 |
+
print(f"[GENERATION] Generation completed in {generation_time:.2f}s")
|
316 |
+
|
317 |
+
audio_variants = []
|
318 |
+
sample_rate = outputs[0]['sampling_rate']
|
319 |
+
|
320 |
+
for i, output in enumerate(outputs):
|
321 |
+
audio_data = output['audio']
|
322 |
+
|
323 |
+
print(f"[GENERATION] Processing variant {i + 1} audio shape: {audio_data.shape}")
|
324 |
+
|
325 |
+
if hasattr(audio_data, 'cpu'):
|
326 |
+
audio_data = audio_data.cpu().numpy()
|
327 |
+
|
328 |
+
if len(audio_data.shape) == 3:
|
329 |
+
audio_data = audio_data[0]
|
330 |
+
|
331 |
+
if len(audio_data.shape) == 2:
|
332 |
+
if audio_data.shape[0] < audio_data.shape[1]:
|
333 |
+
audio_data = audio_data.T
|
334 |
+
if audio_data.shape[1] > 1:
|
335 |
+
audio_data = audio_data[:, 0]
|
336 |
+
else:
|
337 |
+
audio_data = audio_data.flatten()
|
338 |
+
|
339 |
+
audio_data = audio_data.flatten()
|
340 |
+
|
341 |
+
max_val = np.max(np.abs(audio_data))
|
342 |
+
if max_val > 0:
|
343 |
+
audio_data = audio_data / max_val * 0.95
|
344 |
+
|
345 |
+
audio_data = (audio_data * 32767).astype(np.int16)
|
346 |
+
audio_variants.append((sample_rate, audio_data))
|
347 |
+
|
348 |
+
print(f"[GENERATION] Variant {i + 1} final shape: {audio_data.shape}")
|
349 |
+
|
350 |
+
while len(audio_variants) < 6:
|
351 |
+
audio_variants.append(None)
|
352 |
+
|
353 |
+
savings_message = get_fixed_savings_message()
|
354 |
+
|
355 |
+
variants_text = "audio"
|
356 |
+
generation_info = f"β
Generated {variants_text} in {generation_time:.2f}s\n{savings_message}"
|
357 |
+
|
358 |
+
return audio_variants[0], audio_variants[1], audio_variants[2], audio_variants[3], audio_variants[4], audio_variants[5], generation_info
|
359 |
+
|
360 |
+
except Exception as e:
|
361 |
+
print(f"[ERROR] Batch generation failed: {str(e)}")
|
362 |
+
cleanup_gpu()
|
363 |
+
error_msg = f"β Generation failed: {str(e)}"
|
364 |
+
return None, None, None, None, None, None, error_msg
|
365 |
+
|
366 |
+
|
367 |
with gr.Blocks(title="MusicGen Large - Music Generation") as demo:
|
368 |
gr.Markdown("# π΅ MusicGen Large Music Generator")
|
369 |
+
|
370 |
+
gr.Markdown(
|
371 |
+
f"Generate music from text descriptions using Facebook's MusicGen "
|
372 |
+
f"Large model accelerated by TheStage for 2.3x faster performance.")
|
373 |
+
|
374 |
+
with gr.Column():
|
375 |
+
text_input = gr.Textbox(
|
376 |
+
label="Music Description",
|
377 |
+
placeholder="Enter a description of the music you want to generate",
|
378 |
+
lines=3,
|
379 |
+
value="A groovy funk bassline with a tight drum beat"
|
380 |
+
)
|
381 |
+
|
382 |
+
with gr.Row():
|
383 |
+
duration = gr.Slider(
|
384 |
+
minimum=5,
|
385 |
+
maximum=30,
|
386 |
+
value=10,
|
387 |
+
step=1,
|
388 |
+
label="Duration (seconds)"
|
389 |
)
|
390 |
+
guidance_scale = gr.Slider(
|
391 |
+
minimum=1.0,
|
392 |
+
maximum=10.0,
|
393 |
+
value=3.0,
|
394 |
+
step=0.5,
|
395 |
+
label="Guidance Scale",
|
396 |
+
info="Higher values follow prompt more closely"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
397 |
)
|
398 |
+
|
399 |
+
generate_btn = gr.Button("π΅ Generate Music", variant="primary", size="lg")
|
400 |
+
|
401 |
+
generation_info = gr.Markdown("Ready to generate music with elastic acceleration")
|
402 |
+
|
403 |
+
audio_section_title = "### Generated Music"
|
404 |
+
gr.Markdown(audio_section_title)
|
405 |
+
|
406 |
+
actual_outputs = MODEL_CONFIG['batch_size'] if MODEL_CONFIG['batch_mode'] else 1
|
407 |
+
|
408 |
+
audio_outputs = []
|
409 |
+
|
410 |
+
with gr.Row():
|
411 |
+
audio_output1 = gr.Audio(label="Variant 1", type="numpy", visible=actual_outputs >= 1)
|
412 |
+
audio_output2 = gr.Audio(label="Variant 2", type="numpy", visible=actual_outputs >= 2)
|
413 |
+
audio_outputs.extend([audio_output1, audio_output2])
|
414 |
+
|
415 |
+
with gr.Row():
|
416 |
+
audio_output3 = gr.Audio(label="Variant 3", type="numpy", visible=actual_outputs >= 3)
|
417 |
+
audio_output4 = gr.Audio(label="Variant 4", type="numpy", visible=actual_outputs >= 4)
|
418 |
+
audio_outputs.extend([audio_output3, audio_output4])
|
419 |
+
|
420 |
+
with gr.Row():
|
421 |
+
audio_output5 = gr.Audio(label="Variant 5", type="numpy", visible=actual_outputs >= 5)
|
422 |
+
audio_output6 = gr.Audio(label="Variant 6", type="numpy", visible=actual_outputs >= 6)
|
423 |
+
audio_outputs.extend([audio_output5, audio_output6])
|
424 |
+
|
425 |
+
savings_banner = gr.Markdown(get_fixed_savings_message())
|
426 |
+
|
427 |
+
with gr.Accordion("π‘ Tips & Information", open=False):
|
428 |
+
gr.Markdown(f"""
|
429 |
+
**Generation Tips:**
|
430 |
+
- Be specific in your descriptions (e.g., "slow blues guitar with harmonica")
|
431 |
+
- Higher guidance scale = follows prompt more closely
|
432 |
+
- Lower guidance scale = more creative/varied results
|
433 |
+
- Duration is limited to 30 seconds for faster generation
|
434 |
+
|
435 |
+
**Performance:**
|
436 |
+
- Accelerated by TheStage elastic compression
|
437 |
+
- L40S GPU pricing: $1.8/hour
|
438 |
+
""")
|
439 |
+
|
440 |
+
def generate_simple(text_prompt, duration, guidance_scale):
|
441 |
+
return generate_music_batch(text_prompt, duration, guidance_scale, "compressed")
|
442 |
|
443 |
generate_btn.click(
|
444 |
+
fn=generate_simple,
|
445 |
inputs=[text_input, duration, guidance_scale],
|
446 |
+
outputs=[audio_output1, audio_output2, audio_output3, audio_output4, audio_output5, audio_output6, generation_info],
|
447 |
show_progress=True
|
448 |
)
|
449 |
|