File size: 5,464 Bytes
c9da29e
 
 
 
 
f6cfe33
 
 
c9da29e
 
 
 
f6cfe33
c9da29e
 
 
 
 
 
 
 
 
 
 
f6cfe33
c9da29e
 
 
 
 
 
 
 
f6cfe33
c9da29e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import gradio as gr
import numpy as np
from PIL import Image
from ultralytics import YOLO
import cv2
from pathlib import Path

path = Path(__file__).parent

# Model configurations
MODEL_CONFIGS = {
    "Dry Season Form": {
        "path": path/"models/DSF_Mleda_250.pt",
        "labels": [
            "F1", "F2", "F3", "F4", "F5", "F6", "F7", "F8", "F9", "F10", "F11", "F12", "F13", "F14", "F15", "F16",
            "H1", "H2", "H3", "H4", "H5", "H6", "H7", "H8", "H9", "H10", "H11", "H12", "H13", "H14", "H15", "H16", "H17",
            "fs1", "fs2", "fs3", "fs4", "fs5",
            "hs1", "hs2", "hs3", "hs4", "hs5", "hs6",
            "sc1", "sc2",
            "sex", "right", "left", "grey", "black", "white"
        ],
        "imgsz": 1280
    },
    "Wet Season Form": {
        "path": path/"models/WSF_Mleda_200.pt",
        "labels": [
            'F12', 'F14', 'fs1', 'fs2', 'fs3', 'fs4', 'fs5',
            'H12', 'H14', 'hs1', 'hs2', 'hs3', 'hs4', 'hs5', 'hs6',
            'white', 'black', 'grey', 'sex', 'blue', 'green', 'red', 'sc1', 'sc2'
        ],
        "imgsz": 1280
    },
    "All Season Form": {
        "path": path/"models/DSF_WSF_Mleda_450.pt",
        "labels": [
            "F1", "F2", "F3", "F4", "F5", "F6", "F7", "F8", "F9", "F10", "F11", "F12", "F13", "F14", "F15", "F16",
            "H1", "H2", "H3", "H4", "H5", "H6", "H7", "H8", "H9", "H10", "H11", "H12", "H13", "H14", "H15", "H16", "H17",
            "fs1", "fs2", "fs3", "fs4", "fs5",
            "hs1", "hs2", "hs3", "hs4", "hs5", "hs6",
            "sc1", "sc2",
            "sex", "right", "left", "grey", "black", "white"
        ],
        "imgsz": 1280
    }
}

def hex_to_bgr(hex_color: str) -> tuple:
    """Convert #RRGGBB hex color to BGR tuple."""
    hex_color = hex_color.lstrip("#")
    if len(hex_color) != 6:
        return (0, 255, 0)  # Default to green if invalid
    r = int(hex_color[0:2], 16)
    g = int(hex_color[2:4], 16)
    b = int(hex_color[4:6], 16)
    return (b, g, r)

def load_model(path):
    """Load YOLO model from the given path."""
    return YOLO(path)

def draw_detections(image: np.ndarray, results, labels, keypoint_threshold: float, show_labels: bool, point_size: int, point_color: str, label_size: float) -> np.ndarray:
    img = image.copy()
    color_bgr = hex_to_bgr(point_color)

    for result in results:
        boxes = result.boxes.xywh.cpu().numpy()
        cls_ids = result.boxes.cls.int().cpu().numpy()
        confs = result.boxes.conf.cpu().numpy()
        kpts_all = result.keypoints.data.cpu().numpy()

        for (x_c, y_c, w, h), cls_id, conf, kpts in zip(boxes, cls_ids, confs, kpts_all):
            x1 = int(x_c - w/2); y1 = int(y_c - h/2)
            x2 = int(x_c + w/2); y2 = int(y_c + h/2)

            cv2.rectangle(img, (x1, y1), (x2, y2), color=(255,255,0), thickness=2)

            class_name = result.names[int(cls_id)]
            text = f"{class_name} {conf:.2f}"
            (tw, th), _ = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 1)
            cv2.rectangle(img, (x1, y1 - th - 4), (x1 + tw, y1), (255,255,0), cv2.FILLED)
            cv2.putText(img, text, (x1, y1 - 4), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0,0,0), 1, cv2.LINE_AA)

            for i, (x, y, v) in enumerate(kpts):
                if v > keypoint_threshold and i < len(labels):
                    xi, yi = int(x), int(y)
                    cv2.circle(img, (xi, yi), int(point_size), color_bgr, -1, cv2.LINE_AA)
                    if show_labels:
                        cv2.putText(img, labels[i], (xi + 3, yi + 3), cv2.FONT_HERSHEY_SIMPLEX, label_size, (255,0,0), 2, cv2.LINE_AA)
    return img


def predict_and_annotate(input_image: Image.Image, conf_threshold: float, keypoint_threshold: float, model_choice: str, show_labels: bool, point_size: int, point_color: str, label_size: float):
    config = MODEL_CONFIGS[model_choice]
    model = load_model(config["path"])
    labels = config["labels"]
    imgsz = config["imgsz"]

    img_rgb = np.array(input_image.convert("RGB"))
    img_bgr = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2BGR)

    results = model(img_bgr, conf=conf_threshold, imgsz=imgsz)
    annotated_bgr = draw_detections(img_bgr, results, labels, keypoint_threshold, show_labels, point_size, point_color, label_size)
    annotated_rgb = cv2.cvtColor(annotated_bgr, cv2.COLOR_BGR2RGB)
    return Image.fromarray(annotated_rgb)


# Gradio Interface
app = gr.Interface(
    fn=predict_and_annotate,
    inputs=[
        gr.Image(type="pil", label="Upload Image"),
        gr.Slider(minimum=0.0, maximum=1.0, value=0.25, step=0.01, label="Confidence Threshold"),
        gr.Slider(minimum=0.0, maximum=1.0, value=0.5, step=0.01, label="Keypoint Visibility Threshold"),
        gr.Radio(choices=list(MODEL_CONFIGS.keys()), label="Select Model", value="Dry Season Form"),
        gr.Checkbox(label="Show Keypoint Labels", value=True),
        gr.Slider(minimum=1, maximum=20, value=8, step=0.1, label="Keypoint Size"),
        gr.ColorPicker(label="Keypoint Color", value="#00FF00"),
        gr.Slider(minimum=0.3, maximum=3.0, value=1.0, step=0.1, label="Keypoint Label Font Size")
    ],
    outputs=gr.Image(type="pil", label="Detection Result", format="png"),
    title="🦋 Melanitis leda Landmark Identification",
    description="Upload an image and select the model. Customize detection and keypoint display settings.",
    flagging_mode="never"
)


if __name__ == "__main__":
    app.launch()