Spaces:
Sleeping
Sleeping
File size: 11,245 Bytes
a1eba61 7ccff21 a1eba61 7ccff21 a1eba61 7ccff21 a1eba61 7ccff21 a1eba61 7ccff21 a1eba61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
# core.py - Enhanced with Text Quality AssessmentR
import pyiqa
import torch
from PIL import Image
import glob
import logging
import numpy as np
import cv2
import easyocr
from typing import Dict, List, Tuple, Optional
import warnings
warnings.filterwarnings("ignore")
class TextQualityAssessor:
"""Specialized text quality assessment using OCR confidence scores"""
def __init__(self):
self.ocr_reader = easyocr.Reader(['en'], gpu=torch.cuda.is_available())
def assess_text_quality(self, image: Image.Image) -> Dict:
"""Assess text quality using OCR confidence and detection metrics"""
try:
# Convert PIL to OpenCV format
cv_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
# Perform OCR with confidence scores
results = self.ocr_reader.readtext(cv_image, detail=1)
if not results:
return {
'text_detected': False,
'text_quality_score': 100.0, # No text = no text quality issues
'avg_confidence': 1.0,
'text_regions': 0,
'low_quality_regions': 0,
'details': "No text detected"
}
confidences = [result[2] for result in results]
avg_confidence = np.mean(confidences)
# Count low quality text regions (confidence < 0.8)
low_quality_threshold = 0.8
low_quality_regions = sum(1 for conf in confidences if conf < low_quality_threshold)
# Calculate text quality score based on confidence distribution
# Higher penalties for very low confidence text
quality_penalties = []
for conf in confidences:
if conf >= 0.9:
quality_penalties.append(0) # Excellent text
elif conf >= 0.8:
quality_penalties.append(5) # Good text
elif conf >= 0.6:
quality_penalties.append(15) # Readable but poor quality
elif conf >= 0.4:
quality_penalties.append(30) # Heavily distorted
else:
quality_penalties.append(50) # Severely distorted/unreadable
avg_penalty = np.mean(quality_penalties) if quality_penalties else 0
text_quality_score = max(0, 100 - avg_penalty)
# Additional penalty for high proportion of low-quality regions
if len(confidences) > 0:
low_quality_ratio = low_quality_regions / len(confidences)
if low_quality_ratio > 0.5: # More than half regions are poor quality
text_quality_score *= 0.7 # 30% additional penalty
return {
'text_detected': True,
'text_quality_score': text_quality_score,
'avg_confidence': avg_confidence,
'text_regions': len(results),
'low_quality_regions': low_quality_regions,
'details': f"Detected {len(results)} text regions, avg confidence: {avg_confidence:.3f}"
}
except Exception as e:
logging.error(f"Text quality assessment error: {str(e)}")
return {
'text_detected': False,
'text_quality_score': 50.0, # Neutral score on error
'avg_confidence': 0.0,
'text_regions': 0,
'low_quality_regions': 0,
'details': f"Error: {str(e)}"
}
class HybridIQA:
"""Enhanced IQA with text-specific quality assessment"""
def __init__(self, model_name="qualiclip+", text_weight=0.3):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model = pyiqa.create_metric(model_name, device=device)
self.text_assessor = TextQualityAssessor()
self.text_weight = text_weight # Weight for text quality in final score
self.model_name = model_name
logging.basicConfig(level=logging.INFO)
self.logger = logging.getLogger(__name__)
self.logger.info(f"Hybrid IQA loaded: {model_name} + Text Quality Assessment on {device}")
def __call__(self, image, return_details=False):
"""
Evaluate image quality with both traditional IQA and text-specific assessment
Args:
image: PIL Image or path to image
return_details: If True, return detailed breakdown
Returns:
If return_details=False: Combined quality score (0-100)
If return_details=True: Dict with detailed scores and analysis
"""
try:
# Ensure image is PIL Image
if not isinstance(image, Image.Image):
image = Image.open(image).convert("RGB")
else:
image = image.convert("RGB")
# Get traditional IQA score
# Get traditional IQA score
if self.model_name == 'qalign':
# Q-Align has special interface for quality assessment
traditional_score = self.model(image, task_='quality')
else:
traditional_score = self.model(image)
if hasattr(traditional_score, 'item'):
traditional_score = traditional_score.item()
# Normalize traditional score to 0-100 range
if 0 <= traditional_score <= 1:
traditional_score *= 100
# Get text quality assessment
text_analysis = self.text_assessor.assess_text_quality(image)
# Calculate combined score
if text_analysis['text_detected']:
# If text is detected, combine scores
combined_score = (
(1 - self.text_weight) * traditional_score +
self.text_weight * text_analysis['text_quality_score']
)
# Apply additional penalty if text quality is very poor
if text_analysis['text_quality_score'] < 30:
combined_score *= 0.8 # 20% additional penalty for severely poor text
else:
# No text detected, use traditional score only
combined_score = traditional_score
if return_details:
return {
'combined_score': combined_score,
'traditional_score': traditional_score,
'text_analysis': text_analysis,
'model_used': self.model_name,
'text_weight': self.text_weight
}
else:
return combined_score
except Exception as e:
self.logger.error(f"Error processing image: {str(e)}")
return None if not return_details else {'error': str(e)}
# Backward compatibility - maintain original IQA interface
class IQA(HybridIQA):
"""Backward compatible IQA class with enhanced text assessment"""
def __init__(self, model_name="qualiclip+"):
super().__init__(model_name, text_weight=0.3)
def __call__(self, image):
"""Maintain original interface - returns single score"""
return super().__call__(image, return_details=False)
def detailed_analysis(self, image):
"""New method for detailed analysis"""
return super().__call__(image, return_details=True)
# Advanced usage class for power users
class TextAwareIQA:
"""Advanced interface with configurable text assessment parameters"""
def __init__(self, model_name="qualiclip+", text_weight=0.3, text_threshold=0.8):
self.hybrid_iqa = HybridIQA(model_name, text_weight)
self.text_threshold = text_threshold
def evaluate(self, image, text_penalty_mode='balanced'):
"""
Evaluate with different text penalty modes
Args:
image: PIL Image or path
text_penalty_mode: 'strict', 'balanced', or 'lenient'
"""
details = self.hybrid_iqa(image, return_details=True)
if details is None or 'error' in details:
return details
# Adjust text penalties based on mode
if details['text_analysis']['text_detected']:
text_score = details['text_analysis']['text_quality_score']
traditional_score = details['traditional_score']
if text_penalty_mode == 'strict':
# Heavily penalize any text quality issues
weight = 0.5
if text_score < 70:
text_score *= 0.6
elif text_penalty_mode == 'lenient':
# Only penalize severe text issues
weight = 0.1
if text_score > 40:
text_score = min(text_score * 1.2, 100)
else: # balanced
weight = 0.3
combined_score = (1 - weight) * traditional_score + weight * text_score
details['combined_score'] = combined_score
details['penalty_mode'] = text_penalty_mode
return details
if __name__ == "__main__":
# Test both interfaces
print("Testing Hybrid IQA System")
print("=" * 50)
# Original interface (backward compatible)
print("\n1. Original Interface (Backward Compatible):")
iqa_metric = IQA(model_name="qualiclip+")
# Advanced interface
print("\n2. Advanced Interface:")
advanced_iqa = TextAwareIQA(model_name="qualiclip+", text_weight=0.4)
image_files = glob.glob("samples/*")
if not image_files:
print("No images found in samples directory. Please add images or adjust the path.")
else:
for image_file in image_files[:3]: # Test first 3 images
print(f"\nAnalyzing: {image_file}")
# Original score
score = iqa_metric(image_file)
if score is not None:
print(f" Simple Score: {score:.2f}/100")
# Detailed analysis
details = iqa_metric.detailed_analysis(image_file)
if details and 'error' not in details:
print(f" Traditional IQA: {details['traditional_score']:.2f}/100")
print(f" Text Quality: {details['text_analysis']['text_quality_score']:.2f}/100")
print(f" Combined Score: {details['combined_score']:.2f}/100")
print(f" Text Details: {details['text_analysis']['details']}")
if details['text_analysis']['text_detected']:
print(f" Text Regions: {details['text_analysis']['text_regions']}")
print(f" Low Quality Regions: {details['text_analysis']['low_quality_regions']}")
print(f" Avg OCR Confidence: {details['text_analysis']['avg_confidence']:.3f}")
print("-" * 30) |