# core.py - Enhanced with Text Quality AssessmentR import pyiqa import torch from PIL import Image import glob import logging import numpy as np import cv2 import easyocr from typing import Dict, List, Tuple, Optional import warnings warnings.filterwarnings("ignore") class TextQualityAssessor: """Specialized text quality assessment using OCR confidence scores""" def __init__(self): self.ocr_reader = easyocr.Reader(['en'], gpu=torch.cuda.is_available()) def assess_text_quality(self, image: Image.Image) -> Dict: """Assess text quality using OCR confidence and detection metrics""" try: # Convert PIL to OpenCV format cv_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) # Perform OCR with confidence scores results = self.ocr_reader.readtext(cv_image, detail=1) if not results: return { 'text_detected': False, 'text_quality_score': 100.0, # No text = no text quality issues 'avg_confidence': 1.0, 'text_regions': 0, 'low_quality_regions': 0, 'details': "No text detected" } confidences = [result[2] for result in results] avg_confidence = np.mean(confidences) # Count low quality text regions (confidence < 0.8) low_quality_threshold = 0.8 low_quality_regions = sum(1 for conf in confidences if conf < low_quality_threshold) # Calculate text quality score based on confidence distribution # Higher penalties for very low confidence text quality_penalties = [] for conf in confidences: if conf >= 0.9: quality_penalties.append(0) # Excellent text elif conf >= 0.8: quality_penalties.append(5) # Good text elif conf >= 0.6: quality_penalties.append(15) # Readable but poor quality elif conf >= 0.4: quality_penalties.append(30) # Heavily distorted else: quality_penalties.append(50) # Severely distorted/unreadable avg_penalty = np.mean(quality_penalties) if quality_penalties else 0 text_quality_score = max(0, 100 - avg_penalty) # Additional penalty for high proportion of low-quality regions if len(confidences) > 0: low_quality_ratio = low_quality_regions / len(confidences) if low_quality_ratio > 0.5: # More than half regions are poor quality text_quality_score *= 0.7 # 30% additional penalty return { 'text_detected': True, 'text_quality_score': text_quality_score, 'avg_confidence': avg_confidence, 'text_regions': len(results), 'low_quality_regions': low_quality_regions, 'details': f"Detected {len(results)} text regions, avg confidence: {avg_confidence:.3f}" } except Exception as e: logging.error(f"Text quality assessment error: {str(e)}") return { 'text_detected': False, 'text_quality_score': 50.0, # Neutral score on error 'avg_confidence': 0.0, 'text_regions': 0, 'low_quality_regions': 0, 'details': f"Error: {str(e)}" } class HybridIQA: """Enhanced IQA with text-specific quality assessment""" def __init__(self, model_name="qualiclip+", text_weight=0.3): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.model = pyiqa.create_metric(model_name, device=device) self.text_assessor = TextQualityAssessor() self.text_weight = text_weight # Weight for text quality in final score self.model_name = model_name logging.basicConfig(level=logging.INFO) self.logger = logging.getLogger(__name__) self.logger.info(f"Hybrid IQA loaded: {model_name} + Text Quality Assessment on {device}") def __call__(self, image, return_details=False): """ Evaluate image quality with both traditional IQA and text-specific assessment Args: image: PIL Image or path to image return_details: If True, return detailed breakdown Returns: If return_details=False: Combined quality score (0-100) If return_details=True: Dict with detailed scores and analysis """ try: # Ensure image is PIL Image if not isinstance(image, Image.Image): image = Image.open(image).convert("RGB") else: image = image.convert("RGB") # Get traditional IQA score # Get traditional IQA score if self.model_name == 'qalign': # Q-Align has special interface for quality assessment traditional_score = self.model(image, task_='quality') else: traditional_score = self.model(image) if hasattr(traditional_score, 'item'): traditional_score = traditional_score.item() # Normalize traditional score to 0-100 range if 0 <= traditional_score <= 1: traditional_score *= 100 # Get text quality assessment text_analysis = self.text_assessor.assess_text_quality(image) # Calculate combined score if text_analysis['text_detected']: # If text is detected, combine scores combined_score = ( (1 - self.text_weight) * traditional_score + self.text_weight * text_analysis['text_quality_score'] ) # Apply additional penalty if text quality is very poor if text_analysis['text_quality_score'] < 30: combined_score *= 0.8 # 20% additional penalty for severely poor text else: # No text detected, use traditional score only combined_score = traditional_score if return_details: return { 'combined_score': combined_score, 'traditional_score': traditional_score, 'text_analysis': text_analysis, 'model_used': self.model_name, 'text_weight': self.text_weight } else: return combined_score except Exception as e: self.logger.error(f"Error processing image: {str(e)}") return None if not return_details else {'error': str(e)} # Backward compatibility - maintain original IQA interface class IQA(HybridIQA): """Backward compatible IQA class with enhanced text assessment""" def __init__(self, model_name="qualiclip+"): super().__init__(model_name, text_weight=0.3) def __call__(self, image): """Maintain original interface - returns single score""" return super().__call__(image, return_details=False) def detailed_analysis(self, image): """New method for detailed analysis""" return super().__call__(image, return_details=True) # Advanced usage class for power users class TextAwareIQA: """Advanced interface with configurable text assessment parameters""" def __init__(self, model_name="qualiclip+", text_weight=0.3, text_threshold=0.8): self.hybrid_iqa = HybridIQA(model_name, text_weight) self.text_threshold = text_threshold def evaluate(self, image, text_penalty_mode='balanced'): """ Evaluate with different text penalty modes Args: image: PIL Image or path text_penalty_mode: 'strict', 'balanced', or 'lenient' """ details = self.hybrid_iqa(image, return_details=True) if details is None or 'error' in details: return details # Adjust text penalties based on mode if details['text_analysis']['text_detected']: text_score = details['text_analysis']['text_quality_score'] traditional_score = details['traditional_score'] if text_penalty_mode == 'strict': # Heavily penalize any text quality issues weight = 0.5 if text_score < 70: text_score *= 0.6 elif text_penalty_mode == 'lenient': # Only penalize severe text issues weight = 0.1 if text_score > 40: text_score = min(text_score * 1.2, 100) else: # balanced weight = 0.3 combined_score = (1 - weight) * traditional_score + weight * text_score details['combined_score'] = combined_score details['penalty_mode'] = text_penalty_mode return details if __name__ == "__main__": # Test both interfaces print("Testing Hybrid IQA System") print("=" * 50) # Original interface (backward compatible) print("\n1. Original Interface (Backward Compatible):") iqa_metric = IQA(model_name="qualiclip+") # Advanced interface print("\n2. Advanced Interface:") advanced_iqa = TextAwareIQA(model_name="qualiclip+", text_weight=0.4) image_files = glob.glob("samples/*") if not image_files: print("No images found in samples directory. Please add images or adjust the path.") else: for image_file in image_files[:3]: # Test first 3 images print(f"\nAnalyzing: {image_file}") # Original score score = iqa_metric(image_file) if score is not None: print(f" Simple Score: {score:.2f}/100") # Detailed analysis details = iqa_metric.detailed_analysis(image_file) if details and 'error' not in details: print(f" Traditional IQA: {details['traditional_score']:.2f}/100") print(f" Text Quality: {details['text_analysis']['text_quality_score']:.2f}/100") print(f" Combined Score: {details['combined_score']:.2f}/100") print(f" Text Details: {details['text_analysis']['details']}") if details['text_analysis']['text_detected']: print(f" Text Regions: {details['text_analysis']['text_regions']}") print(f" Low Quality Regions: {details['text_analysis']['low_quality_regions']}") print(f" Avg OCR Confidence: {details['text_analysis']['avg_confidence']:.3f}") print("-" * 30)