|
from transformers import AutoModelForSequenceClassification |
|
from transformers import AutoTokenizer, AutoConfig |
|
import numpy as np |
|
from scipy.special import softmax |
|
import gradio as gr |
|
|
|
|
|
def preprocess(text): |
|
new_text = [] |
|
for t in text.split(" "): |
|
t = '@user' if t.startswith('@') and len(t) > 1 else t |
|
t = 'http' if t.startswith('http') else t |
|
new_text.append(t) |
|
return " ".join(new_text) |
|
|
|
|
|
MODEL = f"cardiffnlp/twitter-roberta-base-sentiment-latest" |
|
model = AutoModelForSequenceClassification.from_pretrained(MODEL) |
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL) |
|
config = AutoConfig.from_pretrained(MODEL) |
|
|
|
|
|
def classify_compliant(text): |
|
text = preprocess(text) |
|
encoded_input = tokenizer(text, return_tensors='pt') |
|
output = model(**encoded_input) |
|
scores = output[0][0].detach().numpy() |
|
scores = softmax(scores) |
|
|
|
|
|
probs = {} |
|
ranking = np.argsort(scores) |
|
ranking = ranking[::-1] |
|
|
|
for i in range(len(scores)): |
|
l = config.id2label[ranking[i]] |
|
s = scores[ranking[i]] |
|
probs[l] = np.round(float(s), 4) |
|
return probs |
|
|
|
|
|
|
|
|
|
title="Text Sentiment Analysis" |
|
description = """Write a Good or Bad review about an imaginary product or service,\ |
|
see how the machine learning model is able to predict your sentiments""" |
|
article = """ |
|
- Click submit button to test sentiment analysis prediction |
|
- Click clear button to refresh text |
|
""" |
|
|
|
gr.Interface(classify_compliant, |
|
'text', |
|
'label', |
|
title = title, |
|
description = description, |
|
|
|
article = article, |
|
allow_flagging = "never", |
|
live = False, |
|
examples=["This has to be the best Introductory course in machine learning", |
|
"I consider this training an absolute waste of time."] |
|
).launch() |
|
|