File size: 5,180 Bytes
1d990cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e17b69c
1d990cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c83080
1d990cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d03c834
1d990cf
14a1150
1d990cf
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import os
import sys
import random
import statistics 
import numpy as np
import matplotlib.pyplot as plt 
import threading
import time
import queue
sys.path.append(os.path.abspath("../lib"))
sys.path.append(os.path.abspath("../supv"))
sys.path.append(os.path.abspath("../text"))
from util import *
from sampler import *
from tnn import *
from txproc import *
import streamlit as st
emailDoms = ["yahoo.com", "gmail.com", "hotmail.com", "aol.com"]

st.title("Duplicate Records Prediction")

def printNgramVec(ngv):
    """
    print ngram vector
    """
    print("ngram vector")
    for i in range(len(ngv)):
        if ngv[i] > 0:
            print("{} {}".format(i, ngv[i]))

def createNegMatch(tdata, ri):
    """
    create negative match by randomly selecting another record
    """
    nri = randomInt(0, len(tdata)-1)
    while nri == ri:
        nri = randomInt(0, len(tdata)-1)
    return tdata[nri]

def createNgramCreator():
    """ create ngram creator """
    cng = CharNGram(["lcc", "ucc", "dig"], 3, True)
    spc = ["@", "#", "_", "-", "."]
    cng.addSpChar(spc)
    cng.setWsRepl("$")
    cng.finalize()
    return cng

def getSim(rec, incOutput=True):
    """ get rec pair similarity """
    #print(rec)
    sim = list()
    for i in range(6):
        #print("field " + str(i))
        if i == 3:
            s = levenshteinSimilarity(rec[i],rec[i+6])
        else:
            ngv1 = cng.toMgramCount(rec[i])
            ngv2 = cng.toMgramCount(rec[i+6])
            #printNgramVec(ngv1)
            #printNgramVec(ngv2)
            s = cosineSimilarity(ngv1, ngv2)
        sim.append(s)
    ss = toStrFromList(sim, 6)
    srec = ss + "," + rec[-1] if incOutput else ss
    return srec


class SimThread (threading.Thread):
    """ multi threaded similarity calculation """

    def __init__(self, tName, cng, qu, incOutput, outQu, outQuSize):
        """ initialize """
        threading.Thread.__init__(self)
        self.tName = tName
        self.cng = cng
        self.qu = qu
        self.incOutput = incOutput
        self.outQu = outQu
        self.outQuSize = outQuSize

    def run(self):
        """ exeution """
        exitFlag =True
        while not exitFlag:
            rec = dequeue(self.qu, workQuLock)
            if rec is not None:
                srec = getSim(rec, self.incOutput)
                if outQu is None:
                    print(srec)
                else:
                    enqueue(srec, self.outQu, outQuLock, self.outQuSize)

def createThreads(nworker, cng, workQu, incOutput, outQu, outQuSize):
    """create worker threads """
    threadList = list(map(lambda i : "Thread-" + str(i+1), range(nworker)))
    threads = list()
    for tName in threadList:
        thread = SimThread(tName, cng, workQu, incOutput, outQu, outQuSize)
        thread.start()
        threads.append(thread)
    return threads


def enqueue(rec, qu, quLock, qSize): 
    """ enqueue record """
    queued = False
    while not queued:
        quLock.acquire()
        if qu.qsize() < qSize - 1:
            qu.put(rec)
            queued = True
        quLock.release()
        time.sleep(1)

def dequeue(qu, quLock): 
    """ dequeue record """
    rec = None
    quLock.acquire()
    if not qu.empty():
        rec = qu.get()
    quLock.release()

    return rec

test_file = 'pers_new_dup.txt'
exist_file  = 'pers_exist.txt'
prop_file = 'tnn_disamb.properties'

def predict_main(test_file,exist_file,prop_file):
    #multi threading related
    workQuLock = threading.Lock()
    outQuLock = threading.Lock()
    exitFlag = False

    """ predict with neural network model """
    newFilePath = test_file
    existFilePath = exist_file
    nworker = 1
    prFile = prop_file
    
    regr = FeedForwardNetwork(prFile)
    regr.buildModel()
    cng = createNgramCreator()
    
    #create threads
    qSize = 100
    workQu = queue.Queue(qSize)
    outQu = queue.Queue(qSize)
    threads = createThreads(nworker, cng, workQu, False, outQu, qSize)
    
    for nrec in fileRecGen(newFilePath):
        srecs = list()
        ecount = 0
        y_pred = []
        #print("processing ", nrec)
        for erec in fileRecGen(existFilePath):
            rec = nrec.copy()
            rec.extend(erec)
            #print(rec)
            
            enqueue(rec, workQu, workQuLock, qSize)
            srec = dequeue(outQu, outQuLock)
            if srec is not None:
                srecs.append(strToFloatArray(srec))
            ecount += 1

            #wait til workq queue is drained
            while not workQu.empty():
                pass

            #drain out queue
            while len(srecs) < ecount:
                srec = dequeue(outQu, outQuLock)
                if srec is not None:
                    srecs.append(strToFloatArray(srec))
            #predict        
            simMax = 0
            sims = FeedForwardNetwork.predict(regr, srecs)
            sims = sims.reshape(sims.shape[0])
            y_pred.append(max(sims))
            #print("{}  {:.3f}".format(nrec, y_pred))
        print(nrec, max(y_pred))

        # exitFlag = True

st.header(predict_main(test_file,exist_file,prop_file))  

st.header("End")