File size: 34,868 Bytes
c5f0a6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
#!/usr/bin/env python
# coding: utf-8

# In[ ]:


import sys
import random 
import time
import math
import random
import numpy as np
from scipy import stats
from random import randint
from util import *
from stats import Histogram

def randomFloat(low, high):
    """
    sample float within range
    Parameters
        low : low valuee
        high : high valuee
    """
    return random.random() * (high-low) + low

def randomInt(minv, maxv):
    """
    sample int within range
    Parameters
        minv : low valuee
        maxv : high valuee
    """
    return randint(minv, maxv)

def randIndex(lData):
    """
    random index of a list
    Parameters
        lData : list data
    """
    return randint(0, len(lData)-1)

def randomUniformSampled(low, high):
    """
    sample float within range

    Parameters
        low : low value
        high : high value
    """
    return np.random.uniform(low, high)

def randomUniformSampledList(low, high, size):
    """
    sample floats within range to create list
    Parameters
        low : low value
        high : high value
        size ; size of list to be returned
    """
    return np.random.uniform(low, high, size)

def randomNormSampled(mean, sd):
    """
    sample float from normal
    Parameters
        mean : mean
        sd : std deviation
    """
    return np.random.normal(mean, sd)

def randomNormSampledList(mean, sd, size):
    """
    sample float list from normal 
    Parameters
        mean : mean
        sd : std deviation
        size : size of list to be returned
    """
    return np.random.normal(mean, sd, size)

def randomSampledList(sampler, size):
    """
    sample list from given sampler 
    Parameters
        sampler : sampler object
        size : size of list to be returned
    """
    return list(map(lambda i : sampler.sample(), range(size)))


def minLimit(val, minv):
    """
    min limit

    Parameters
        val : value
        minv : min limit
    """
    if (val < minv):
        val = minv
    return val


def rangeLimit(val, minv, maxv):
    """
    range limit
    Parameters
        val : value
        minv : min limit
        maxv : max limit
    """
    if (val < minv):
        val = minv
    elif (val > maxv):
        val = maxv
    return val


def sampleUniform(minv, maxv):
    """
    sample int within range
    Parameters
        minv ; int min limit
        maxv : int max limit
    """
    return randint(minv, maxv)


def sampleFromBase(value, dev):
    """
    sample int wrt base
    Parameters
        value : base value
        dev : deviation
    """
    return randint(value - dev, value + dev)


def sampleFloatFromBase(value, dev):
    """
    sample float wrt base
    Parameters
        value : base value
        dev : deviation
    """
    return randomFloat(value - dev, value + dev)


def distrUniformWithRanndom(total, numItems, noiseLevel):
    """
    uniformly distribute with some randomness and preserves total
    Parameters
        total : total count
        numItems : no of bins
        noiseLevel : noise level fraction
    """
    perItem = total / numItems
    var = perItem * noiseLevel
    items = []
    for i in range(numItems):
        item = perItem + randomFloat(-var, var)
        items.append(item)	

    #adjust last item
    sm = sum(items[:-1])
    items[-1] = total - sm
    return items


def isEventSampled(threshold, maxv=100):
    """
    sample event which occurs if sampled below threshold
    Parameters
        threshold : threshold for sampling
        maxv : maximum values
    """
    return randint(0, maxv) < threshold


def sampleBinaryEvents(events, probPercent):
    """
    sample binary events
    Parameters
        events : two events
        probPercent : probability as percentage
    """
    if (randint(0, 100) < probPercent):
        event = events[0]
    else:
        event = events[1]
    return event


def addNoiseNum(value, sampler):
    """
    add noise to numeric value
    Parameters
        value : base value
        sampler : sampler for noise
    """
    return value * (1 + sampler.sample())


def addNoiseCat(value, values, noise):	
    """
    add noise to categorical value i.e with some probability change value
    Parameters
        value : cat value
        values : cat values
        noise : noise level fraction
    """
    newValue = value
    threshold = int(noise * 100)
    if (isEventSampled(threshold)):		
        newValue = selectRandomFromList(values)
        while newValue == value:
            newValue = selectRandomFromList(values)
    return newValue


def sampleWithReplace(data, sampSize):
    """
    sample with replacement
    Parameters
        data : array
        sampSize : sample size
    """
    sampled = list()
    le = len(data)
    if sampSize is None:
        sampSize = le
    for i in range(sampSize):
        j = random.randint(0, le - 1)
        sampled.append(data[j])
    return sampled

class CumDistr:
    """
    cumulative distr
    """

    def __init__(self, data, numBins = None):
        """
        initializer

        Parameters
            data : array
            numBins : no of bins
        """
        if not numBins:
            numBins = int(len(data) / 5)
        res = stats.cumfreq(data, numbins=numBins)
        self.cdistr = res.cumcount / len(data)
        self.loLim = res.lowerlimit
        self.upLim = res.lowerlimit + res.binsize * res.cumcount.size
        self.binWidth = res.binsize

    def getDistr(self, value):
        """
        get cumulative distribution

        Parameters
            value : value
        """
        if value <= self.loLim:
            d = 0.0
        elif value >= self.upLim:
            d = 1.0
        else:
            bin = int((value - self.loLim) / self.binWidth)
            d = self.cdistr[bin]
        return d

class BernoulliTrialSampler:
    """
    bernoulli trial sampler return True or False
    """

    def __init__(self, pr):
        """
        initializer

        Parameters
            pr : probability
        """
        self.pr = pr

    def sample(self):
        """
        samples value
        """
        return random.random() < self.pr

class PoissonSampler:
    """
    poisson sampler returns number of events
    """
    def __init__(self, rateOccur, maxSamp):
        """
        initializer

        Parameters
            rateOccur : rate of occurence
            maxSamp : max limit on no of samples
        """
        self.rateOccur = rateOccur
        self.maxSamp = int(maxSamp)
        self.pmax = self.calculatePr(rateOccur)

    def calculatePr(self, numOccur):
        """
        calulates probability

        Parameters
            numOccur : no of occurence
        """
        p = (self.rateOccur ** numOccur) * math.exp(-self.rateOccur) / math.factorial(numOccur)
        return p

    def sample(self):
        """
        samples value
        """
        done = False
        samp = 0
        while not done:
            no = randint(0, self.maxSamp)
            sp = randomFloat(0.0, self.pmax)
            ap = self.calculatePr(no)
            if sp < ap:
                done = True
                samp = no
        return samp

class ExponentialSampler:
    """
    returns interval between events
    """
    def __init__(self, rateOccur, maxSamp = None):
        """
        initializer

        Parameters
            rateOccur : rate of occurence
            maxSamp : max limit on interval
        """
        self.interval = 1.0 / rateOccur
        self.maxSamp = int(maxSamp) if maxSamp is not None else None

    def sample(self):
        """
        samples value
        """
        sampled = np.random.exponential(scale=self.interval)
        if self.maxSamp is not None:
            while sampled > self.maxSamp:
                sampled = np.random.exponential(scale=self.interval)
        return sampled

class UniformNumericSampler:
    """
    uniform sampler for numerical values
    """
    def __init__(self, minv, maxv):
        """
        initializer

        Parameters
            minv : min value
            maxv : max value
        """
        self.minv = minv
        self.maxv = maxv

    def isNumeric(self):
        """
        returns true
        """
        return True

    def sample(self):
        """
        samples value
        """
        samp =	sampleUniform(self.minv, self.maxv) if isinstance(self.minv, int) else randomFloat(self.minv, self.maxv)
        return samp	

class UniformCategoricalSampler:
    """
    uniform sampler for categorical values
    """
    def __init__(self, cvalues):
        """
        initializer

        Parameters
            cvalues : categorical value list
        """
        self.cvalues = cvalues

    def isNumeric(self):
        return False

    def sample(self):
        """
        samples value
        """
        return selectRandomFromList(self.cvalues)	

class NormalSampler:
    """
    normal sampler
    """
    def __init__(self, mean, stdDev):
        """
        initializer

        Parameters
            mean : mean
            stdDev : std deviation
        """
        self.mean = mean
        self.stdDev = stdDev
        self.sampleAsInt = False

    def isNumeric(self):
        return True

    def sampleAsIntValue(self):
        """
        set True to sample as int
        """
        self.sampleAsInt = True

    def sample(self):
        """
        samples value
        """
        samp =  np.random.normal(self.mean, self.stdDev)
        if self.sampleAsInt:
            samp = int(samp)
        return samp

class LogNormalSampler:
    """
    log normal sampler
    """
    def __init__(self, mean, stdDev):
        """
        initializer

        Parameters
            mean : mean
            stdDev : std deviation
        """
        self.mean = mean
        self.stdDev = stdDev

    def isNumeric(self):
        return True

    def sample(self):
        """
        samples value
        """
        return np.random.lognormal(self.mean, self.stdDev)

class NormalSamplerWithTrendCycle:
    """
    normal sampler with cycle and trend
    """
    def __init__(self, mean, stdDev, dmean, cycle,  step=1):
        """
        initializer

        Parameters
            mean : mean
            stdDev : std deviation
            dmean : trend delta
            cycle : cycle values wrt base mean
            step : adjustment step for cycle and trend
        """
        self.mean = mean
        self.cmean = mean
        self.stdDev = stdDev
        self.dmean = dmean
        self.cycle = cycle
        self.clen = len(cycle) if cycle is not None else 0
        self.step = step
        self.count = 0

    def isNumeric(self):
        return True

    def sample(self):
        """
        samples value
        """
        s = np.random.normal(self.cmean, self.stdDev)
        self.count += 1
        if self.count % self.step == 0:
            cy = 0
            if self.clen > 1:
                coff =  self.count % self.clen
                cy = self.cycle[coff]
            tr = self.count * self.dmean
            self.cmean = self.mean + tr + cy
        return s


class ParetoSampler:
    """
    pareto sampler
    """
    def __init__(self, mode, shape):
        """
        initializer

        Parameters
            mode : mode
            shape : shape
        """
        self.mode = mode
        self.shape = shape

    def isNumeric(self):
        return True

    def sample(self):
        """
        samples value
        """
        return (np.random.pareto(self.shape) + 1) * self.mode

class GammaSampler:
    """
    pareto sampler
    """
    def __init__(self, shape, scale):
        """
        initializer

        Parameters
            shape : shape
            scale : scale
        """
        self.shape = shape
        self.scale = scale

    def isNumeric(self):
        return True

    def sample(self):
        """
        samples value
        """
        return np.random.gamma(self.shape, self.scale)

class GaussianRejectSampler:
    """
    gaussian sampling based on rejection sampling
    """
    def __init__(self, mean, stdDev):
        """
        initializer

        Parameters
            mean : mean
            stdDev : std deviation
        """
        self.mean = mean
        self.stdDev = stdDev
        self.xmin = mean - 3 * stdDev
        self.xmax = mean + 3 * stdDev
        self.ymin = 0.0
        self.fmax = 1.0 / (math.sqrt(2.0 * 3.14) * stdDev)
        self.ymax = 1.05 * self.fmax
        self.sampleAsInt = False

    def isNumeric(self):
        return True

    def sampleAsIntValue(self):
        """
        sample as int value
        """
        self.sampleAsInt = True

    def sample(self):
        """
        samples value
        """
        done = False
        samp = 0
        while not done:
            x = randomFloat(self.xmin, self.xmax)
            y = randomFloat(self.ymin, self.ymax)
            f = self.fmax * math.exp(-(x - self.mean) * (x - self.mean) / (2.0 * self.stdDev * self.stdDev))
            if (y < f):
                done = True
                samp = x
        if self.sampleAsInt:
            samp = int(samp)
        return samp

class DiscreteRejectSampler:
    """
    non parametric sampling for discrete values  using given distribution based 
    on rejection sampling	
    """
    def __init__(self,  xmin, xmax, step, *values):
        """
        initializer

        Parameters
            xmin : min  value
            xmax : max  value
            step : discrete step
            values : distr values
        """
        self.xmin = xmin
        self.xmax = xmax
        self.step = step
        self.distr = values
        if (len(self.distr) == 1):
            self.distr = self.distr[0]	
        numSteps = int((self.xmax - self.xmin) / self.step)
        #print("{:.3f} {:.3f} {:.3f} {}".format(self.xmin, self.xmax, self.step, numSteps))
        assert len(self.distr)	== numSteps + 1, "invalid number of distr values expected {}".format(numSteps + 1)
        self.ximin = 0
        self.ximax = numSteps
        self.pmax = float(max(self.distr))

    def isNumeric(self):
        return True

    def sample(self):
        """
        samples value
        """
        done = False
        samp = None
        while not done:
            xi = randint(self.ximin, self.ximax)
            #print(formatAny(xi, "xi"))
            ps = randomFloat(0.0, self.pmax)
            pa = self.distr[xi]
            if ps < pa:
                samp = self.xmin + xi  * self.step
                done = True
        return samp


class TriangularRejectSampler:
    """
    non parametric sampling using triangular distribution based on rejection sampling	
    """
    def __init__(self, xmin, xmax, vertexValue, vertexPos=None):
        """
        initializer

        Parameters
            xmin : min  value
            xmax : max  value
            vertexValue : distr value at vertex
            vertexPos : vertex pposition
        """
        self.xmin = xmin
        self.xmax = xmax
        self.vertexValue = vertexValue
        if vertexPos: 
            assert vertexPos > xmin and vertexPos < xmax, "vertex position outside bound"
            self.vertexPos = vertexPos
        else:
            self.vertexPos = 0.5 * (xmin + xmax)
        self.s1 = vertexValue / (self.vertexPos - xmin)
        self.s2 = vertexValue / (xmax - self.vertexPos)

    def isNumeric(self):
        return True

    def sample(self):
        """
        samples value
        """
        done = False
        samp = None
        while not done:
            x = randomFloat(self.xmin, self.xmax)
            y = randomFloat(0.0, self.vertexValue)
            f = (x - self.xmin) * self.s1 if x < self.vertexPos else (self.xmax - x) * self.s2
            if (y < f):
                done = True
                samp = x

        return samp;	

class NonParamRejectSampler:
    """
    non parametric sampling using given distribution based on rejection sampling	
    """
    def __init__(self, xmin, binWidth, *values):
        """
        initializer

        Parameters
            xmin : min  value
            binWidth : bin width
            values : distr values
        """
        self.values = values
        if (len(self.values) == 1):
            self.values = self.values[0]
        self.xmin = xmin
        self.xmax = xmin + binWidth * (len(self.values) - 1)
        #print(self.xmin, self.xmax, binWidth)
        self.binWidth = binWidth
        self.fmax = 0
        for v in self.values:
            if (v > self.fmax):
                self.fmax = v
        self.ymin = 0
        self.ymax = self.fmax
        self.sampleAsInt = True

    def isNumeric(self):
        return True

    def sampleAsFloat(self):
        self.sampleAsInt = False

    def sample(self):
        """
        samples value
        """
        done = False
        samp = 0
        while not done:
            if self.sampleAsInt:
                x = random.randint(self.xmin, self.xmax)
                y = random.randint(self.ymin, self.ymax)
            else:
                x = randomFloat(self.xmin, self.xmax)
                y = randomFloat(self.ymin, self.ymax)
            bin = int((x - self.xmin) / self.binWidth)
            f = self.values[bin]
            if (y < f):
                done = True
                samp = x
        return samp

class JointNonParamRejectSampler:
    """
    non parametric sampling using given distribution based on rejection sampling	
    """
    def __init__(self, xmin, xbinWidth, xnbin, ymin, ybinWidth, ynbin, *values):
        """
        initializer

        Parameters
            xmin : min  value for x
            xbinWidth : bin width for x
            xnbin : no of bins for x
            ymin : min  value for y
            ybinWidth : bin width for y
            ynbin : no of bins for y
            values : distr values
        """
        self.values = values
        if (len(self.values) == 1):
            self.values = self.values[0]
        assert len(self.values) ==  xnbin * ynbin, "wrong number of values for joint distr"
        self.xmin = xmin
        self.xmax = xmin + xbinWidth * xnbin
        self.xbinWidth = xbinWidth
        self.ymin = ymin
        self.ymax = ymin + ybinWidth * ynbin
        self.ybinWidth = ybinWidth
        self.pmax = max(self.values)
        self.values = np.array(self.values).reshape(xnbin, ynbin)

    def isNumeric(self):
        return True

    def sample(self):
        """
        samples value
        """
        done = False
        samp = 0
        while not done:
            x = randomFloat(self.xmin, self.xmax)
            y = randomFloat(self.ymin, self.ymax)
            xbin = int((x - self.xmin) / self.xbinWidth)
            ybin = int((y - self.ymin) / self.ybinWidth)
            ap = self.values[xbin][ybin]
            sp = randomFloat(0.0, self.pmax)
            if (sp < ap):
                done = True
                samp = [x,y]
        return samp


class JointNormalSampler:
    """
    joint normal sampler	
    """
    def __init__(self, *values):
        """
        initializer

        Parameters
            values : 2 mean values followed by 4 values for covar matrix
        """
        lvalues = list(values)
        assert len(lvalues) == 6, "incorrect number of arguments for joint normal sampler"
        mean = lvalues[:2]
        self.mean = np.array(mean)
        sd = lvalues[2:]
        self.sd = np.array(sd).reshape(2,2)

    def isNumeric(self):
        return True

    def sample(self):
        """
        samples value
        """
        return list(np.random.multivariate_normal(self.mean, self.sd))


class MultiVarNormalSampler:
    """
    muti variate normal sampler	
    """
    def __init__(self, numVar, *values):
        """
        initializer

        Parameters
            numVar : no of variables
            values : numVar mean values followed by numVar x numVar values for covar matrix
        """
        lvalues = list(values)
        assert len(lvalues) == numVar + numVar * numVar, "incorrect number of arguments for multi var normal sampler"
        mean = lvalues[:numVar]
        self.mean = np.array(mean)
        sd = lvalues[numVar:]
        self.sd = np.array(sd).reshape(numVar,numVar)

    def isNumeric(self):
        return True

    def sample(self):
        """
        samples value
        """
        return list(np.random.multivariate_normal(self.mean, self.sd))

class CategoricalRejectSampler:
    """
    non parametric sampling for categorical attributes using given distribution based 
    on rejection sampling	
    """
    def __init__(self,  *values):
        """
        initializer

        Parameters
            values : list of tuples which contains a categorical value and the corresponsding distr value
        """
        self.distr = values
        if (len(self.distr) == 1):
            self.distr = self.distr[0]
        maxv = 0
        for t in self.distr:
            if t[1] > maxv:
                maxv = t[1]
        self.maxv = maxv

    def sample(self):
        """
        samples value
        """
        done = False
        samp = ""
        while not done:
            t = self.distr[randint(0, len(self.distr)-1)]	
            d = randomFloat(0, self.maxv)	
            if (d <= t[1]):
                done = True
                samp = t[0]
        return samp


class DistrMixtureSampler:
    """
    distr mixture sampler
    """
    def __init__(self,  mixtureWtDistr, *compDistr):
        """
        initializer

        Parameters
            mixtureWtDistr : sampler that returns index into sampler list
            compDistr : sampler list
        """
        self.mixtureWtDistr = mixtureWtDistr
        self.compDistr = compDistr
        if (len(self.compDistr) == 1):
            self.compDistr = self.compDistr[0]

    def isNumeric(self):
        return True

    def sample(self):
        """
        samples value
        """
        comp = self.mixtureWtDistr.sample()

        #sample  sampled comp distr
        return self.compDistr[comp].sample()

class AncestralSampler:
    """
    ancestral sampler using conditional distribution
    """
    def __init__(self,  parentDistr, childDistr, numChildren):
        """
        initializer

        Parameters
            parentDistr : parent distr
            childDistr : childdren distribution dictionary
            numChildren : no of children
        """
        self.parentDistr = parentDistr
        self.childDistr = childDistr
        self.numChildren = numChildren

    def sample(self):
        """
        samples value
        """
        parent = self.parentDistr.sample()

        #sample all children conditioned on parent
        children = []
        for i in range(self.numChildren):
            key = (parent, i)
            child = self.childDistr[key].sample()
            children.append(child)
        return (parent, children)

class ClusterSampler:
    """
    sample cluster and then sample member of sampled cluster
    """
    def __init__(self,  clusters, *clustDistr):
        """
        initializer

        Parameters
            clusters : dictionary clusters
            clustDistr : distr for clusters
        """
        self.sampler = CategoricalRejectSampler(*clustDistr)
        self.clusters = clusters

    def sample(self):
        """
        samples value
        """
        cluster = self.sampler.sample()
        member = random.choice(self.clusters[cluster])
        return (cluster, member)


class MetropolitanSampler:
    """
    metropolitan sampler	
    """
    def __init__(self, propStdDev, min, binWidth, values):
        """
        initializer

        Parameters
            propStdDev : proposal distr std dev
            min : min domain value for target distr
            binWidth : bin width
            values : target distr values
        """
        self.targetDistr = Histogram.createInitialized(min, binWidth, values)
        self.propsalDistr = GaussianRejectSampler(0, propStdDev)
        self.proposalMixture = False

        # bootstrap sample
        (minv, maxv) = self.targetDistr.getMinMax()
        self.curSample = random.randint(minv, maxv)
        self.curDistr = self.targetDistr.value(self.curSample)
        self.transCount = 0

    def initialize(self):
        """
        initialize
        """
        (minv, maxv) = self.targetDistr.getMinMax()
        self.curSample = random.randint(minv, maxv)
        self.curDistr = self.targetDistr.value(self.curSample)
        self.transCount = 0

    def setProposalDistr(self, propsalDistr):
        """
        set custom proposal distribution
        Parameters
            propsalDistr : proposal distribution
        """
        self.propsalDistr = propsalDistr


    def setGlobalProposalDistr(self, globPropStdDev, proposalChoiceThreshold):
        """
        set custom proposal distribution
        Parameters
            globPropStdDev : global proposal distr std deviation
            proposalChoiceThreshold : threshold for using global proposal distribution
        """
        self.globalProposalDistr = GaussianRejectSampler(0, globPropStdDev)
        self.proposalChoiceThreshold = proposalChoiceThreshold
        self.proposalMixture = True

    def sample(self):
        """
        samples value
        """
        nextSample = self.proposalSample(1)
        self.targetSample(nextSample)
        return self.curSample;

    def proposalSample(self, skip):
        """
        sample from proposal distribution
        Parameters
            skip : no of samples to skip
        """
        for i in range(skip):
            if not self.proposalMixture:
                #one proposal distr
                nextSample = self.curSample + self.propsalDistr.sample()
                nextSample = self.targetDistr.boundedValue(nextSample)
            else:
                #mixture of proposal distr
                if random.random() < self.proposalChoiceThreshold:
                    nextSample = self.curSample + self.propsalDistr.sample()
                else:
                    nextSample = self.curSample + self.globalProposalDistr.sample()
                nextSample = self.targetDistr.boundedValue(nextSample)

        return nextSample

    def targetSample(self, nextSample):
        """
        target sample
        Parameters
            nextSample : proposal distr sample
        """
        nextDistr = self.targetDistr.value(nextSample)

        transition = False
        if nextDistr > self.curDistr:
            transition = True
        else:
            distrRatio = float(nextDistr) / self.curDistr
            if random.random() < distrRatio:
                transition = True

        if transition:
            self.curSample = nextSample
            self.curDistr = nextDistr
            self.transCount += 1


    def subSample(self, skip):
        """
        sub sample
        Parameters
            skip : no of samples to skip
        """
        nextSample = self.proposalSample(skip)
        self.targetSample(nextSample)
        return self.curSample;

    def setMixtureProposal(self, globPropStdDev, mixtureThreshold):
        """
        mixture proposal
        Parameters
            globPropStdDev : global proposal distr std deviation
            mixtureThreshold : threshold for using global proposal distribution
        """
        self.globalProposalDistr = GaussianRejectSampler(0, globPropStdDev)
        self.mixtureThreshold = mixtureThreshold

    def samplePropsal(self):
        """
        sample from proposal distr
        """
        if self.globalPropsalDistr is None:
            proposal = self.propsalDistr.sample()
        else:
            if random.random() < self.mixtureThreshold:
                proposal = self.propsalDistr.sample()
            else:
                proposal = self.globalProposalDistr.sample()

        return proposal

class PermutationSampler:
    """
    permutation sampler by shuffling a list
    """
    def __init__(self):
        """
        initialize
        """
        self.values = None
        self.numShuffles = None

    @staticmethod
    def createSamplerWithValues(values, *numShuffles):
        """
        creator with values
        Parameters
            values : list data
            numShuffles : no of shuffles or range of no of shuffles
        """
        sampler = PermutationSampler()
        sampler.values = values
        sampler.numShuffles = numShuffles
        return sampler

    @staticmethod
    def createSamplerWithRange(minv, maxv, *numShuffles):
        """
        creator with ramge min and max

        Parameters
            minv : min of range
            maxv : max of range
            numShuffles : no of shuffles or range of no of shuffles
        """
        sampler = PermutationSampler()
        sampler.values = list(range(minv, maxv + 1))
        sampler.numShuffles = numShuffles
        return sampler

    def sample(self):
        """
        sample new permutation
        """
        cloned = self.values.copy()
        shuffle(cloned, *self.numShuffles)
        return cloned

class SpikeyDataSampler:
    """
    samples spikey data
    """
    def __init__(self, intvMean, intvScale, distr, spikeValueMean, spikeValueStd, spikeMaxDuration, baseValue = 0):
        """
        initializer

        Parameters
            intvMean : interval mean
            intvScale : interval std dev
            distr : type of distr for interval
            spikeValueMean : spike value mean
            spikeValueStd : spike value std dev
            spikeMaxDuration : max duration for spike
            baseValue : base or offset value
        """
        if distr == "norm":
            self.intvSampler = NormalSampler(intvMean, intvScale)
        elif distr == "expo":
            rate = 1.0 / intvScale
            self.intvSampler = ExponentialSampler(rate)
        else:
            raise ValueError("invalid distribution")

        self.spikeSampler = NormalSampler(spikeValueMean, spikeValueStd)
        self.spikeMaxDuration = spikeMaxDuration
        self.baseValue = baseValue
        self.inSpike = False
        self.spikeCount = 0
        self.baseCount = 0
        self.baseLength = int(self.intvSampler.sample())
        self.spikeValues = list()
        self.spikeLength = None

    def sample(self):
        """
        sample new value
        """
        if self.baseCount <= self.baseLength:
            sampled = self.baseValue
            self.baseCount += 1
        else:
            if not self.inSpike:
                #starting spike
                spikeVal = self.spikeSampler.sample()
                self.spikeLength = sampleUniform(1, self.spikeMaxDuration)
                spikeMaxPos = 0 if self.spikeLength == 1 else sampleUniform(0, self.spikeLength-1)
                self.spikeValues.clear()
                for i in range(self.spikeLength):
                    if i < spikeMaxPos:
                        frac = (i + 1) / (spikeMaxPos + 1)
                        frac = sampleFloatFromBase(frac, 0.1 * frac)
                    elif i > spikeMaxPos:
                        frac =  (self.spikeLength - i) / (self.spikeLength - spikeMaxPos)
                        frac = sampleFloatFromBase(frac, 0.1 * frac)
                    else:
                        frac = 1.0
                    self.spikeValues.append(frac * spikeVal)
                    self.inSpike = True
                    self.spikeCount = 0


            sampled = self.spikeValues[self.spikeCount]
            self.spikeCount += 1

            if self.spikeCount == self.spikeLength:
                #ending spike
                self.baseCount = 0
                self.baseLength = int(self.intvSampler.sample())
                self.inSpike = False

        return sampled


class EventSampler:
    """
    sample event
    """
    def __init__(self, intvSampler, valSampler=None):
        """
        initializer

        Parameters
            intvSampler : interval sampler
            valSampler : value sampler
        """
        self.intvSampler = intvSampler
        self.valSampler = valSampler
        self.trigger = int(self.intvSampler.sample())
        self.count = 0

    def reset(self):
        """
        reset trigger
        """
        self.trigger = int(self.intvSampler.sample())
        self.count = 0

    def sample(self):
        """
        sample event
        """
        if self.count == self.trigger:
            sampled = self.valSampler.sample() if self.valSampler is not None else 1.0
            self.trigger = int(self.intvSampler.sample())
            self.count = 0
        else:
            sample = 0.0
            self.count += 1
        return sampled




def createSampler(data):
    """
    create sampler

    Parameters
        data : sampler description
    """
    #print(data)
    items = data.split(":")
    size = len(items)
    dtype = items[-1]
    stype = items[-2]
    sampler = None
    if stype == "uniform":
        if dtype == "int":
            min = int(items[0])
            max = int(items[1])
            sampler = UniformNumericSampler(min, max)
        elif dtype == "float":
            min = float(items[0])
            max = float(items[1])
            sampler = UniformNumericSampler(min, max)
        elif dtype == "categorical":
            values = items[:-2]
            sampler = UniformCategoricalSampler(values)
    elif stype == "normal":
            mean = float(items[0])
            sd = float(items[1])
            sampler = NormalSampler(mean, sd)
            if dtype == "int":
                sampler.sampleAsIntValue()
    elif stype == "nonparam":
        if dtype == "int" or dtype == "float":
            min = int(items[0])
            binWidth = int(items[1])
            values = items[2:-2]
            values = list(map(lambda v: int(v), values))
            sampler = NonParamRejectSampler(min, binWidth, values)
            if dtype == "float":
                sampler.sampleAsFloat()
        elif dtype == "categorical":
            values = list()
            for i in range(0, size-2, 2):
                cval = items[i]
                dist = int(items[i+1])
                pair = (cval, dist)
                values.append(pair)
            sampler = CategoricalRejectSampler(values)
    elif stype == "discrete":
        vmin = int(items[0])
        vmax = int(items[1])
        step = int(items[2])
        values = list(map(lambda i : int(items[i]), range(3, len(items)-2)))
        sampler = DiscreteRejectSampler(vmin, vmax, step, values)
    else:
        raise ValueError("invalid sampler type " + dtype)
    return sampler