File size: 10,753 Bytes
c5f0a6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
#!/usr/bin/env python
# coding: utf-8

# In[ ]:


import sys
import random 
import time
import math
import numpy as np
import statistics 
from util import *

"""
histogram class
"""
class Histogram:
    def __init__(self, min, binWidth):
        """
        initializer

        Parameters
            min : min x
            binWidth : bin width
        """
        self.xmin = min
        self.binWidth = binWidth
        self.normalized = False

    @classmethod
    def createInitialized(cls, xmin, binWidth, values):
        """
        create histogram instance with min domain, bin width and values

        Parameters
            min : min x
            binWidth : bin width
            values : y values
        """
        instance = cls(xmin, binWidth)
        instance.xmax = xmin + binWidth * (len(values) - 1)
        instance.ymin = 0
        instance.bins = np.array(values)
        instance.fmax = 0
        for v in values:
            if (v > instance.fmax):
                instance.fmax = v
        instance.ymin = 0.0
        instance.ymax = instance.fmax
        return instance

    @classmethod
    def createWithNumBins(cls, values, numBins=20):
        """
        create histogram instance values and no of bins

        Parameters
            values : y values
            numBins : no of bins
        """
        xmin = min(values)
        xmax = max(values)
        binWidth = (xmax + .01 - (xmin - .01)) / numBins
        instance = cls(xmin, binWidth)
        instance.xmax = xmax
        instance.numBin = numBins
        instance.bins = np.zeros(instance.numBin)
        for v in values:
            instance.add(v)
        return instance

    @classmethod
    def createUninitialized(cls, xmin, xmax, binWidth):
        """
        create histogram instance with no y values using domain min , max and bin width

        Parameters
            min : min x
            max : max x
            binWidth : bin width
        """
        instance = cls(xmin, binWidth)
        instance.xmax = xmax
        instance.numBin = (xmax - xmin) / binWidth + 1
        instance.bins = np.zeros(instance.numBin)
        return instance

    def initialize(self):
        """
        set y values to 0
        """
        self.bins = np.zeros(self.numBin)

    def add(self, value):
        """
        adds a value to a bin

        Parameters
            value : value
        """
        bin = int((value - self.xmin) / self.binWidth)
        if (bin < 0 or  bin > self.numBin - 1):
            print (bin)
            raise ValueError("outside histogram range")
        self.bins[bin] += 1.0

    def normalize(self):
        """
        normalize  bin counts
        """
        if not self.normalized:
            total = self.bins.sum()
            self.bins = np.divide(self.bins, total)
            self.normalized = True

    def cumDistr(self):
        """
        cumulative dists
        """
        self.normalize()
        self.cbins = np.cumsum(self.bins)
        return self.cbins

    def distr(self):
        """
        distr
        """
        self.normalize()
        return self.bins


    def percentile(self, percent):
        """
        return value corresponding to a percentile

        Parameters
            percent : percentile value
        """
        if self.cbins is None:
            raise ValueError("cumulative distribution is not available")

        for i,cuml in enumerate(self.cbins):
            if percent > cuml:
                value = (i * self.binWidth) - (self.binWidth / 2) +                 (percent - self.cbins[i-1]) * self.binWidth / (self.cbins[i] - self.cbins[i-1]) 
                break
        return value

    def max(self):
        """
        return max bin value 
        """
        return self.bins.max()

    def value(self, x):
        """
        return a bin value	

        Parameters
            x : x value
        """
        bin = int((x - self.xmin) / self.binWidth)
        f = self.bins[bin]
        return f

    def bin(self, x):
        """
        return a bin index	

        Parameters
            x : x value
        """
        return int((x - self.xmin) / self.binWidth)

    def cumValue(self, x):
        """
        return a cumulative bin value	

        Parameters
            x : x value
        """
        bin = int((x - self.xmin) / self.binWidth)
        c = self.cbins[bin]
        return c


    def getMinMax(self):
        """
        returns x min and x max
        """
        return (self.xmin, self.xmax)

    def boundedValue(self, x):
        """
        return x bounde by min and max	

        Parameters
            x : x value
        """
        if x < self.xmin:
            x = self.xmin
        elif x > self.xmax:
            x = self.xmax
        return x

"""
categorical histogram class
"""
class CatHistogram:
    def __init__(self):
        """
        initializer
        """
        self.binCounts = dict()
        self.counts = 0
        self.normalized = False

    def add(self, value):
        """
        adds a value to a bin

        Parameters
            x : x value
        """
        addToKeyedCounter(self.binCounts, value)
        self.counts += 1	

    def normalize(self):
        """
        normalize
        """
        if not self.normalized:
            self.binCounts = dict(map(lambda r : (r[0],r[1] / self.counts), self.binCounts.items()))
            self.normalized = True

    def getMode(self):
        """
        get mode
        """
        maxk = None
        maxv = 0
        #print(self.binCounts)
        for  k,v  in  self.binCounts.items():
            if v > maxv:
                maxk = k
                maxv = v
        return (maxk, maxv)	

    def getEntropy(self):
        """
        get entropy
        """
        self.normalize()
        entr = 0 
        #print(self.binCounts)
        for  k,v  in  self.binCounts.items():
            entr -= v * math.log(v)
        return entr

    def getUniqueValues(self):
        """
        get unique values
        """		
        return list(self.binCounts.keys())

    def getDistr(self):
        """
        get distribution
        """	
        self.normalize()	
        return self.binCounts.copy()

class RunningStat:
    """
    running stat class
    """
    def __init__(self):
        """
        initializer	
        """
        self.sum = 0.0
        self.sumSq = 0.0
        self.count = 0

    @staticmethod
    def create(count, sum, sumSq):
        """
        creates iinstance	

        Parameters
            sum : sum of values
            sumSq : sum of valure squared
        """
        rs = RunningStat()
        rs.sum = sum
        rs.sumSq = sumSq
        rs.count = count
        return rs

    def add(self, value):
        """
        adds new value
        Parameters
            value : value to add
        """
        self.sum += value
        self.sumSq += (value * value)
        self.count += 1

    def getStat(self):
        """
        return mean and std deviation 
        """
        mean = self.sum /self. count
        t = self.sumSq / (self.count - 1) - mean * mean * self.count / (self.count - 1)
        sd = math.sqrt(t)
        re = (mean, sd)
        return re

    def addGetStat(self,value):
        """
        calculate mean and std deviation with new value added
        Parameters
            value : value to add
        """
        self.add(value)
        re = self.getStat()
        return re

    def getCount(self):
        """
        return count
        """
        return self.count

    def getState(self):
        """
        return state
        """
        s = (self.count, self.sum, self.sumSq)
        return s

class SlidingWindowStat:
    """
    sliding window stats
    """
    def __init__(self):
        """
        initializer
        """
        self.sum = 0.0
        self.sumSq = 0.0
        self.count = 0
        self.values = None

    @staticmethod
    def create(values, sum, sumSq):
        """
        creates iinstance	

        Parameters
            sum : sum of values
            sumSq : sum of valure squared
        """
        sws = SlidingWindowStat()
        sws.sum = sum
        sws.sumSq = sumSq
        self.values = values.copy()
        sws.count = len(self.values)
        return sws

    @staticmethod
    def initialize(values):
        """
        creates iinstance	

        Parameters
            values : list of values
        """
        sws = SlidingWindowStat()
        sws.values = values.copy()
        for v in sws.values:
            sws.sum += v
            sws.sumSq += v * v		
        sws.count = len(sws.values)
        return sws

    @staticmethod
    def createEmpty(count):
        """
        creates iinstance	

        Parameters
            count : count of values
        """
        sws = SlidingWindowStat()
        sws.count = count
        sws.values = list()
        return sws

    def add(self, value):
        """
        adds new value

        Parameters
            value : value to add
        """
        self.values.append(value)		
        if len(self.values) > self.count:
            self.sum += value - self.values[0]
            self.sumSq += (value * value) - (self.values[0] * self.values[0])
            self.values.pop(0)
        else:
            self.sum += value
            self.sumSq += (value * value)


    def getStat(self):
        """
        calculate mean and std deviation 
        """
        mean = self.sum /self. count
        t = self.sumSq / (self.count - 1) - mean * mean * self.count / (self.count - 1)
        sd = math.sqrt(t)
        re = (mean, sd)
        return re

    def addGetStat(self,value):
        """
        calculate mean and std deviation with new value added
        """
        self.add(value)
        re = self.getStat()
        return re

    def getCount(self):
        """
        return count
        """
        return self.count

    def getCurSize(self):
        """
        return count
        """
        return len(self.values)

    def getState(self):
        """
        return state
        """
        s = (self.count, self.sum, self.sumSq)
        return s


def basicStat(ldata):
    """
    mean and std dev
    Parameters
        ldata : list of values
    """
    m = statistics.mean(ldata)
    s = statistics.stdev(ldata, xbar=m)
    r = (m, s)
    return r

def getFileColumnStat(filePath, col, delem=","):
    """
    gets stats for a file column

    Parameters
        filePath : file path
        col : col index
        delem : field delemter
    """
    rs = RunningStat()
    for rec in fileRecGen(filePath, delem):
        va = float(rec[col])
        rs.add(va)

    return rs.getStat()