File size: 27,928 Bytes
c5f0a6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
#!/usr/bin/env python
# coding: utf-8

# In[ ]:


import os
import sys
import matplotlib.pyplot as plt
import numpy as np
import torch
from torch.autograd import Variable
from torch.utils.data import Dataset, TensorDataset
from torch.utils.data import DataLoader
import sklearn as sk
from sklearn.neighbors import KDTree
import matplotlib
import random
import jprops
from random import randint
import statistics
sys.path.append(os.path.abspath("../lib"))
from util import *
from mlutil import *

"""
forward hook function
"""
intermedOut = {}
lvalues = list()

def hookFn(m, i, o):
    """
    call back for latent values
    """
    #intermedOut[m] = o
    lv = o.data.cpu().numpy()
    lv = lv[0].tolist()
    lvalues.append(lv)
    #print(lv)

def getLatValues():
    """
    """
    return lvalues

class FeedForwardNetwork(torch.nn.Module):
    def __init__(self, configFile, addDefValues=None):
        """
        In the constructor we instantiate two nn.Linear modules and assign them as
        member variables.

        Parameters
            configFile : config file path
            addDefValues : dictionary of additional default values	
        """
        defValues = dict() if addDefValues is None else addDefValues.copy()
        defValues["common.mode"] = ("training", None)
        defValues["common.model.directory"] = ("model", None)
        defValues["common.model.file"] = (None, None)
        defValues["common.preprocessing"] = (None, None)
        defValues["common.scaling.method"] = ("zscale", None)
        defValues["common.scaling.minrows"] = (50, None)
        defValues["common.scaling.param.file"] = (None, None)
        defValues["common.verbose"] = (False, None)
        defValues["common.device"] = ("cpu", None)
        defValues["train.data.file"] = (None, "missing training data file")
        defValues["train.data.fields"] = (None, "missing training data field ordinals")
        defValues["train.data.feature.fields"] = (None, "missing training data feature field ordinals")
        defValues["train.data.out.fields"] = (None, "missing training data feature field ordinals")
        defValues["train.layer.data"] = (None, "missing layer data")
        defValues["train.input.size"] = (None, None)
        defValues["train.output.size"] = (None, "missing  output size")
        defValues["train.batch.size"] = (10, None)
        defValues["train.loss.reduction"] = ("mean", None)
        defValues["train.num.iterations"] = (500, None)
        defValues["train.lossFn"] = ("mse", None) 
        defValues["train.optimizer"] = ("sgd", None) 
        defValues["train.opt.learning.rate"] = (.0001, None)
        defValues["train.opt.weight.decay"] = (0, None) 
        defValues["train.opt.momentum"] = (0, None) 
        defValues["train.opt.eps"] = (1e-08, None) 
        defValues["train.opt.dampening"] = (0, None) 
        defValues["train.opt.momentum.nesterov"] = (False, None) 
        defValues["train.opt.betas"] = ([0.9, 0.999], None) 
        defValues["train.opt.alpha"] = (0.99, None) 
        defValues["train.save.model"] = (False, None) 
        defValues["train.track.error"] = (False, None) 
        defValues["train.epoch.intv"] = (5, None) 
        defValues["train.batch.intv"] = (5, None) 
        defValues["train.print.weights"] = (False, None) 
        defValues["valid.data.file"] = (None, None)
        defValues["valid.accuracy.metric"] = (None, None)
        defValues["predict.data.file"] = (None, None)
        defValues["predict.use.saved.model"] = (True, None)
        defValues["predict.output"] = ("binary", None)
        defValues["predict.feat.pad.size"] = (60, None)
        defValues["predict.print.output"] = (True, None)
        defValues["calibrate.num.bins"] = (10, None)
        defValues["calibrate.pred.prob.thresh"] = (0.5, None)
        defValues["calibrate.num.nearest.neighbors"] = (10, None)
        self.config = Configuration(configFile, defValues)

        super(FeedForwardNetwork, self).__init__()

    def setConfigParam(self, name, value):
        """
        set config param

        Parameters
            name : config name
            value : config value
        """
        self.config.setParam(name, value)

    def getConfig(self):
        """
        get config object
        """
        return self.config

    def setVerbose(self, verbose):
        self.verbose = verbose

    def buildModel(self):
        """
        Loads configuration and builds the various piecess necessary for the model
        """
        torch.manual_seed(9999)
        print("self.config", self.config)
        self.verbose = self.config.getBooleanConfig("common.verbose")[0]
        numinp = self.config.getIntConfig("train.input.size")[0]
        if numinp is None:
            numinp = len(self.config.getIntListConfig("train.data.feature.fields")[0])
        #numOut = len(self.config.getStringConfig("train.data.out.fields")[0].split(","))
        self.outputSize = self.config.getIntConfig("train.output.size")[0]
        self.batchSize = self.config.getIntConfig("train.batch.size")[0]
        #lossRed = self.config.getStringConfig("train.loss.reduction")[0]
        #learnRate = self.config.getFloatConfig("train.opt.learning.rate")[0]
        self.numIter = self.config.getIntConfig("train.num.iterations")[0]
        optimizer = self.config.getStringConfig("train.optimizer")[0]
        self.lossFnStr = self.config.getStringConfig("train.lossFn")[0]
        self.accMetric = self.config.getStringConfig("valid.accuracy.metric")[0]
        self.trackErr = self.config.getBooleanConfig("train.track.error")[0]
        self.batchIntv = self.config.getIntConfig("train.batch.intv")[0]
        self.restored = False
        self.clabels = list(range(self.outputSize)) if self.outputSize > 1 else None

        #build network
        layers = list()
        ninp = numinp
        trData =  self.config.getStringConfig("train.layer.data")[0].split(",")
        for ld in trData:
            lde = ld.split(":")
            assert len(lde) == 5, "expecting 5 items for layer data"

            #num of units, activation, whether batch normalize, whether batch normalize after activation, dropout fraction
            nunit = int(lde[0])
            actStr = lde[1]
            act = FeedForwardNetwork.createActivation(actStr) if actStr != "none"  else None
            bnorm = lde[2] == "true"
            afterAct = lde[3] == "true"
            dpr = float(lde[4])

            layers.append(torch.nn.Linear(ninp, nunit))			
            if bnorm:
                #with batch norm
                if afterAct:
                    safeAppend(layers, act)
                    layers.append(torch.nn.BatchNorm1d(nunit))
                else:
                    layers.append(torch.nn.BatchNorm1d(nunit))
                    safeAppend(layers, act)
            else:
                #without batch norm
                safeAppend(layers, act)

            if dpr > 0:
                layers.append(torch.nn.Dropout(dpr))
            ninp = nunit

        self.layers = torch.nn.Sequential(*layers)	

        self.device = FeedForwardNetwork.getDevice(self)

        #training data
        dataFile = self.config.getStringConfig("train.data.file")[0]
        (featData, outData) = FeedForwardNetwork.prepData(self, dataFile)
        self.featData = torch.from_numpy(featData)
        self.outData = torch.from_numpy(outData)

        #validation data
        dataFile = self.config.getStringConfig("valid.data.file")[0]
        (featDataV, outDataV) = FeedForwardNetwork.prepData(self, dataFile)
        self.validFeatData = torch.from_numpy(featDataV)
        self.validOutData = torch.from_numpy(outDataV)

        # loss function and optimizer
        self.lossFn = FeedForwardNetwork.createLossFunction(self, self.lossFnStr)
        self.optimizer =  FeedForwardNetwork.createOptimizer(self, optimizer)

        self.yPred  = None
        self.restored = False

        #mode to device
        self.device = FeedForwardNetwork.getDevice(self)	
        self.featData = self.featData.to(self.device)
        self.outData = self.outData.to(self.device)
        self.validFeatData = self.validFeatData.to(self.device)
        self.to(self.device)

    @staticmethod
    def getDevice(model):
        """
        gets device

        Parameters
            model : torch model
        """
        devType = model.config.getStringConfig("common.device")[0]
        if devType == "cuda":
            if torch.cuda.is_available():
                device = torch.device("cuda")
            else:
                exitWithMsg("cuda not available")
        else:
            device = torch.device("cpu")
        return device

    def setValidationData(self, dataSource, prep=True):
        """
        sets validation data

        Parameters
            dataSource : data source str if file path or 2D array
            prep : if True load and prepare 
        """
        if prep:
            (featDataV, outDataV) = FeedForwardNetwork.prepData(self, dataSource)
            self.validFeatData = torch.from_numpy(featDataV)
            self.validOutData = outDataV
        else:
            self.validFeatData = torch.from_numpy(dataSource[0])
            self.validOutData = dataSource[1]		

        self.validFeatData = self.validFeatData.to(self.device)

    @staticmethod
    def createActivation(actName):
        """
        create activation

        Parameters
            actName : activation name
        """
        if actName is None:
            activation = None
        elif actName == "relu":
            activation = torch.nn.ReLU()
        elif actName == "tanh":
            activation = torch.nn.Tanh()
        elif actName == "sigmoid":
            activation = torch.nn.Sigmoid()
        elif actName == "softmax":
            activation = torch.nn.Softmax(dim=1)
        else:
            exitWithMsg("invalid activation function name " + actName)
        return activation

    @staticmethod
    def createLossFunction(model, lossFnName):
        """
        create loss function

        Parameters
            lossFnName : loss function name
        """
        config = model.config
        lossRed = config.getStringConfig("train.loss.reduction")[0]
        if lossFnName == "ltwo" or lossFnName == "mse":
            lossFunc = torch.nn.MSELoss(reduction=lossRed)
        elif lossFnName == "ce":
            lossFunc = torch.nn.CrossEntropyLoss(reduction=lossRed)
        elif lossFnName == "lone" or lossFnName == "mae":
            lossFunc = torch.nn.L1Loss(reduction=lossRed)
        elif lossFnName == "bce":
            lossFunc = torch.nn.BCELoss(reduction=lossRed)
        elif lossFnName == "bcel":
            lossFunc = torch.nn.BCEWithLogitsLoss(reduction=lossRed)
        elif lossFnName == "sm":
            lossFunc = torch.nn.SoftMarginLoss(reduction=lossRed)
        elif lossFnName == "mlsm":
            lossFunc = torch.nn.MultiLabelSoftMarginLoss(reduction=lossRed)
        else:
            exitWithMsg("invalid loss function name " + lossFnName)
        return lossFunc

    @staticmethod
    def createOptimizer(model, optName):
        """
        create optimizer

        Parameters
            optName : optimizer name
        """
        config = model.config
        learnRate = config.getFloatConfig("train.opt.learning.rate")[0]
        weightDecay = config.getFloatConfig("train.opt.weight.decay")[0]
        momentum = config.getFloatConfig("train.opt.momentum")[0]
        eps = config.getFloatConfig("train.opt.eps")[0]
        if optName == "sgd":
            dampening = config.getFloatConfig("train.opt.dampening")[0]
            momentumNesterov = config.getBooleanConfig("train.opt.momentum.nesterov")[0]
            optimizer = torch.optim.SGD(model.parameters(),lr=learnRate, momentum=momentum, 
            dampening=dampening, weight_decay=weightDecay, nesterov=momentumNesterov)
        elif optName == "adam":
            betas = config.getFloatListConfig("train.opt.betas")[0]
            betas = (betas[0], betas[1]) 
            optimizer = torch.optim.Adam(model.parameters(), lr=learnRate,betas=betas, eps = eps,
            weight_decay=weightDecay)
        elif optName == "rmsprop":
            alpha = config.getFloatConfig("train.opt.alpha")[0]
            optimizer = torch.optim.RMSprop(model.parameters(), lr=learnRate, alpha=alpha,
            eps=eps, weight_decay=weightDecay, momentum=momentum)
        else:
            exitWithMsg("invalid optimizer name " + optName)
        return optimizer


    def forward(self, x):
        """
        In the forward function we accept a Tensor of input data and we must return
        a Tensor of output data. We can use Modules defined in the constructor as
        well as arbitrary (differentiable) operations on Tensors.

        Parameters
            x : data batch
        """
        y = self.layers(x)	
        return y

    @staticmethod
    def addForwardHook(model, l, cl = 0):
        """
        register forward hooks

        Parameters
            l : 
            cl :
        """
        for name, layer in model._modules.items():
            #If it is a sequential, don't register a hook on it
            # but recursively register hook on all it's module children
            print(str(cl) + " : " + name)
            if isinstance(layer, torch.nn.Sequential):
                FeedForwardNetwork.addForwardHook(layer, l, cl)
            else:
            #	 it's a non sequential. Register a hook
                if cl == l:
                    print("setting hook at layer " + str(l))
                    layer.register_forward_hook(hookFn)
                cl += 1

    @staticmethod
    def prepData(model, dataSource, includeOutFld=True):
        """
        loads and prepares  data

        Parameters
            dataSource : data source str if file path or 2D array
            includeOutFld : True if target freld to be included
        """
        # parameters
        fieldIndices = model.config.getIntListConfig("train.data.fields")[0]
        featFieldIndices = model.config.getIntListConfig("train.data.feature.fields")[0]

        #all data and feature data
        isDataFile = isinstance(dataSource, str)
        selFieldIndices = fieldIndices if includeOutFld else fieldIndices[:-1]
        if isDataFile: 
            #source file path 
            (data, featData) = loadDataFile(dataSource, ",", selFieldIndices, featFieldIndices)
        else:
            # tabular data
            data = tableSelFieldsFilter(dataSource, selFieldIndices)
            featData = tableSelFieldsFilter(data, featFieldIndices)
            #print(featData)
            featData = np.array(featData)

        if (model.config.getStringConfig("common.preprocessing")[0] == "scale"):
            scalingMethod = model.config.getStringConfig("common.scaling.method")[0]

            #scale only if there are enough rows
            nrow = featData.shape[0]
            minrows = model.config.getIntConfig("common.scaling.minrows")[0]
            if nrow > minrows:
                #in place scaling
                featData = scaleData(featData, scalingMethod)
            else:
                #use pre computes scaling parameters
                spFile = model.config.getStringConfig("common.scaling.param.file")[0]
                if spFile is None:
                    pass
                    # exitWithMsg("for small data sets pre computed scaling parameters need to provided")
                # scParams = restoreObject(spFile)
                #scParams = None
                #featData = scaleDataWithParams(featData, scalingMethod, scParams)
                featData = np.array(featData)

        # target data
        if includeOutFld:
            outFieldIndices = model.config.getStringConfig("train.data.out.fields")[0]
            outFieldIndices = strToIntArray(outFieldIndices, ",")
            if isDataFile:
                outData = data[:,outFieldIndices]
            else:
                outData = tableSelFieldsFilter(data, outFieldIndices)
                outData = np.array(outData)
            foData = (featData.astype(np.float32), outData.astype(np.float32))
        else:
            foData = featData.astype(np.float32)
        return foData

    @staticmethod
    def saveCheckpt(model):
        """
        checkpoints model

        Parameters
            model : torch model
        """
        print("..saving model checkpoint")
        modelDirectory = model.config.getStringConfig("common.model.directory")[0]
        assert os.path.exists(modelDirectory), "model save directory does not exist"
        modelFile = model.config.getStringConfig("common.model.file")[0]
        filepath = os.path.join(modelDirectory, modelFile)
        state = {"state_dict": model.state_dict(), "optim_dict": model.optimizer.state_dict()}
        torch.save(state, filepath)
        if model.verbose:
            print("model saved")

    @staticmethod
    def restoreCheckpt(model, loadOpt=False):
        """
        restored checkpointed model

        Parameters
            model : torch model
            loadOpt : True if optimizer to be loaded
        """
        if not model.restored:
            print("..restoring model checkpoint")
            modelDirectory = model.config.getStringConfig("common.model.directory")[0]
            modelFile = model.config.getStringConfig("common.model.file")[0]
            filepath = os.path.join(modelDirectory, modelFile)
            assert os.path.exists(filepath), "model save file does not exist"
            checkpoint = torch.load(filepath)
            model.load_state_dict(checkpoint["state_dict"])
            model.to(model.device)
            if loadOpt:
                model.optimizer.load_state_dict(checkpoint["optim_dict"])
            model.restored = True

    @staticmethod
    def processClassifOutput(yPred, config):
        """
        extracts probability label 1 or label with highest probability

        Parameters
            yPred : predicted output
            config : config object
        """
        outType = config.getStringConfig("predict.output")[0]
        if outType == "prob":
            outputSize = config.getIntConfig("train.output.size")[0]
            if outputSize == 2:
                #return prob of pos class for binary classifier 
                yPred = yPred[:, 1]
            else:
                #return  class value and probability for multi classifier 
                yCl = np.argmax(yPred, axis=1)
                yPred = list(map(lambda y : y[0][y[1]], zip(yPred, yCl)))
                yPred = zip(yCl, yPred)
        else:
            yPred = np.argmax(yPred, axis=1)
        return yPred

    @staticmethod
    def printPrediction(yPred, config, dataSource):
        """
        prints input feature data and prediction

        Parameters
            yPred : predicted output
            config : config object
            dataSource : data source str if file path or 2D array
        """
        #prDataFilePath = config.getStringConfig("predict.data.file")[0]
        padWidth = config.getIntConfig("predict.feat.pad.size")[0]
        i = 0
        if type(dataSource) == str:
            for rec in fileRecGen(dataSource, ","):
                feat = (",".join(rec)).ljust(padWidth, " ")
                rec = feat + "\t" + str(yPred[i])
                print(rec)
                i += 1
        else:
            for rec in dataSource:
                srec = toStrList(rec, 6)
                feat = (",".join(srec)).ljust(padWidth, " ")
                srec = feat + "\t" + str(yPred[i])
                print(srec)
                i += 1


    @staticmethod
    def allTrain(model):
        """
        train with all data

        Parameters
            model : torch model
        """
        # train mode
        model.train()
        for t in range(model.numIter):


            # Forward pass: Compute predicted y by passing x to the model
            yPred = model(model.featData)

            # Compute and print loss
            loss = model.lossFn(yPred, model.outData)
            if model.verbose and  t % 50 == 0:
                print("epoch {}  loss {:.6f}".format(t, loss.item()))

            # Zero gradients, perform a backward pass, and update the weights.
            model.optimizer.zero_grad()
            loss.backward()
            model.optimizer.step()    	

        #validate
        model.eval()
        yPred = model(model.validFeatData)
        yPred = yPred.data.cpu().numpy()
        yActual = model.validOutData
        if model.verbose:
            result = np.concatenate((yPred, yActual), axis = 1)
            print("predicted  actual")
            print(result)

        score = perfMetric(model.accMetric, yActual, yPred)
        print(formatFloat(3, score, "perf score"))
        return score

    @staticmethod
    def batchTrain(model):
        """
        train with batch data

        Parameters
            model : torch model
        """
        model.restored = False
        trainData = TensorDataset(model.featData, model.outData)
        trainDataLoader = DataLoader(dataset=trainData, batch_size=model.batchSize, shuffle=True)
        epochIntv = model.config.getIntConfig("train.epoch.intv")[0]

        # train mode
        model.train()

        if model.trackErr:
            trErr = list()
            vaErr = list()
        #epoch
        for t in range(model.numIter):
            #batch
            b = 0
            epochLoss = 0.0
            for xBatch, yBatch in trainDataLoader:

                # Forward pass: Compute predicted y by passing x to the model
                xBatch, yBatch = xBatch.to(model.device), yBatch.to(model.device)
                yPred = model(xBatch)

                # Compute and print loss
                loss = model.lossFn(yPred, yBatch)
                if model.verbose and t % epochIntv == 0 and b % model.batchIntv == 0:
                    print("epoch {}  batch {}  loss {:.6f}".format(t, b, loss.item()))

                if model.trackErr and model.batchIntv == 0:
                    epochLoss += loss.item()

                #error tracking at batch level
                if model.trackErr and model.batchIntv > 0 and b % model.batchIntv == 0:
                    trErr.append(loss.item())
                    vloss = FeedForwardNetwork.evaluateModel(model)
                    vaErr.append(vloss)

                # Zero gradients, perform a backward pass, and update the weights.
                model.optimizer.zero_grad()
                loss.backward()
                model.optimizer.step()    	
                b += 1

            #error tracking at epoch level
            if model.trackErr and model.batchIntv == 0:
                epochLoss /= len(trainDataLoader)
                trErr.append(epochLoss)
                vloss = FeedForwardNetwork.evaluateModel(model)
                vaErr.append(vloss)

        #validate
        model.eval()
        yPred = model(model.validFeatData)
        yPred = yPred.data.cpu().numpy()
        yActual = model.validOutData
        if model.verbose:
            vsize = yPred.shape[0]
            print("\npredicted \t\t actual")
            for i in range(vsize):
                print(str(yPred[i]) + "\t" + str(yActual[i]))

        score = perfMetric(model.accMetric, yActual, yPred)
        print(yActual)
        print(yPred)
        print(formatFloat(3, score, "perf score"))

        #save
        modelSave = model.config.getBooleanConfig("train.model.save")[0]
        if modelSave:
            FeedForwardNetwork.saveCheckpt(model)

        if model.trackErr:
            FeedForwardNetwork.errorPlot(model, trErr, vaErr)

        if model.config.getBooleanConfig("train.print.weights")[0]:
            print("model weights")
            for param in model.parameters():
                print(param.data)
        return score

    @staticmethod
    def errorPlot(model, trErr, vaErr):
        """
        plot errors

        Parameters
            trErr : training error list	
            vaErr : validation error list	
        """
        x = np.arange(len(trErr))
        plt.plot(x,trErr,label = "training error")
        plt.plot(x,vaErr,label = "validation error")
        plt.xlabel("iteration")
        plt.ylabel("error")
        plt.legend(["training error", "validation error"], loc='upper left')
        plt.show()

    @staticmethod
    def modelPredict(model, dataSource = None):
        """
        predict

        Parameters
            model : torch model
            dataSource : data source
        """
        #train or restore model
        useSavedModel = model.config.getBooleanConfig("predict.use.saved.model")[0]
        if useSavedModel:
            FeedForwardNetwork.restoreCheckpt(model)
        else:
            FeedForwardNetwork.batchTrain(model) 

        #predict
        if dataSource is None:
            dataSource = model.config.getStringConfig("predict.data.file")[0]
        featData  = FeedForwardNetwork.prepData(model, dataSource, False)
        #print("featData-----------",featData)
        featData = torch.from_numpy(featData)
        featData = featData.to(model.device)

        model.eval()
        yPred = model(featData)
        yPred = yPred.data.cpu().numpy()
        #print("yPred---------", yPred)

        if model.outputSize >= 2:
            #classification
            yPred = FeedForwardNetwork.processClassifOutput(yPred, model.config)

        # print prediction
        if model.config.getBooleanConfig("predict.print.output")[0]:
            FeedForwardNetwork.printPrediction(yPred, model.config, dataSource)

        return yPred

    def predict(self, dataSource = None):
        """
        predict

        Parameters
            dataSource : data source
        """
        return FeedForwardNetwork.modelPredict(self, dataSource)

    @staticmethod
    def evaluateModel(model):
        """
        evaluate model

        Parameters
            model : torch model
        """
        model.eval()
        with torch.no_grad():
            yPred = model(model.validFeatData)
            #yPred = yPred.data.cpu().numpy()
            yActual = model.validOutData
            score = model.lossFn(yPred, yActual).item()
        model.train()
        return score

    @staticmethod
    def prepValidate(model, dataSource=None):
        """
        prepare for validation

        Parameters
            model : torch model
            dataSource : data source
        """
        #train or restore model
        if not model.restored:
            useSavedModel = model.config.getBooleanConfig("predict.use.saved.model")[0]
            if useSavedModel:
                FeedForwardNetwork.restoreCheckpt(model)
            else:
                FeedForwardNetwork.batchTrain(model)
            model.restored = True

        if 	dataSource is not None:
            model.setValidationData(dataSource)

    @staticmethod
    def validateModel(model, retPred=False):
        """
        pmodel validation

        Parameters
            model : torch model
            retPred : if True return prediction
        """
        model.eval()
        yPred = model(model.validFeatData)
        yPred = yPred.data.cpu().numpy()
        model.yPred = yPred
        yActual = model.validOutData
        vsize = yPred.shape[0]
        if model.verbose:
            print("\npredicted \t actual")
            for i in range(vsize):
                print("{:.3f}\t\t{:.3f}".format(yPred[i][0], yActual[i][0]))

        score = perfMetric(model.accMetric, yActual, yPred)
        print(formatFloat(3, score, "perf score"))

        if retPred:
            y = list(map(lambda i : (yPred[i][0], yActual[i][0]), range(vsize)))
            res = (y, score)
            return res
        else:	
            return score