Spaces:
Runtime error
Runtime error
# import required libraries | |
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
from datetime import datetime | |
from datetime import timedelta | |
from sklearn.model_selection import RandomizedSearchCV, GridSearchCV, train_test_split | |
from sklearn.ensemble import RandomForestRegressor | |
from sklearn.metrics import r2_score | |
from sklearn.preprocessing import LabelEncoder | |
from sklearn.preprocessing import StandardScaler | |
import streamlit as st | |
import warnings | |
warnings.filterwarnings('ignore') | |
st.title("Prection of Maimum Number of Repais") | |
import pandas as pd | |
import numpy as np | |
import pickle | |
# load the saved model using pickle | |
with open('max_repair_model.pkl', 'rb') as file: | |
model = pickle.load(file) | |
# Load the saved manufacturer label encoder object using pickle | |
with open('manufacturer_le.pkl', 'rb') as file1: | |
le = pickle.load(file1) | |
# define the prediction function | |
def predict_max_number_of_repairs(manufacturer, component_age, total_operating_hours, operating_temperature, humidity, vibration_level, pressure, power_input_voltage, previous_number_of_repairs, load_factor, engine_speed, oil_temperature): | |
# encode the manufacturer using the loaded LabelEncoder object | |
manufacturer_encoded = le.transform([manufacturer])[0] | |
# create a DataFrame with the input variables | |
input_data = pd.DataFrame({'Manufacturer': [manufacturer_encoded], | |
'Component_Age': [component_age], | |
'Total_Operating_Hours': [total_operating_hours], | |
'Operating_Temperature': [operating_temperature], | |
'Humidity': [humidity], | |
'Vibration_Level': [vibration_level], | |
'Pressure': [pressure], | |
'Power_Input_Voltage': [power_input_voltage], | |
'Previous_number_of_repairs': [previous_number_of_repairs], | |
'Load_Factor': [load_factor], | |
'Engine_Speed': [engine_speed], | |
'Oil_Temperature': [oil_temperature]}) | |
# make the prediction using the loaded model and input data | |
predicted_max_number_of_repairs = model.predict(input_data) | |
# return the predicted max number of repairs as output | |
return np.round(predicted_max_number_of_repairs[0]) | |
# Function calling | |
print(predict_max_number_of_repairs('ABC Company',100.00,1135,70.0,65,3.43,29.90,120,4,0.59,7398,170)) |