saritha5 commited on
Commit
2f4060f
·
1 Parent(s): 7b96ed1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +58 -19
app.py CHANGED
@@ -20,7 +20,7 @@ warnings.filterwarnings('ignore')
20
 
21
 
22
  st.title("Prection of Maimum Number of Repairs")
23
-
24
  import pandas as pd
25
  import numpy as np
26
  import pickle
@@ -33,31 +33,70 @@ with open('max_repair_model.pkl', 'rb') as file:
33
  with open('manufacturer_le.pkl', 'rb') as file1:
34
  le = pickle.load(file1)
35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
  # define the prediction function
38
- def predict_max_number_of_repairs(manufacturer, component_age, total_operating_hours, operating_temperature, humidity, vibration_level, pressure, power_input_voltage, previous_number_of_repairs, load_factor, engine_speed, oil_temperature):
39
 
40
  # encode the manufacturer using the loaded LabelEncoder object
41
- manufacturer_encoded = le.transform([manufacturer])[0]
42
-
43
- # create a DataFrame with the input variables
44
- input_data = pd.DataFrame({'Manufacturer': [manufacturer_encoded],
45
- 'Component_Age': [component_age],
46
- 'Total_Operating_Hours': [total_operating_hours],
47
- 'Operating_Temperature': [operating_temperature],
48
- 'Humidity': [humidity],
49
- 'Vibration_Level': [vibration_level],
50
- 'Pressure': [pressure],
51
- 'Power_Input_Voltage': [power_input_voltage],
52
- 'Previous_number_of_repairs': [previous_number_of_repairs],
53
- 'Load_Factor': [load_factor],
54
- 'Engine_Speed': [engine_speed],
55
- 'Oil_Temperature': [oil_temperature]})
56
 
57
  # make the prediction using the loaded model and input data
58
- predicted_max_number_of_repairs = model.predict(input_data)
59
 
60
  # return the predicted max number of repairs as output
61
  return np.round(predicted_max_number_of_repairs[0])
62
  # Function calling
63
- predict_max_number_of_repairs('ABC Company',100.00,1135,70.0,65,3.43,29.90,120,4,0.59,7398,170)
 
 
 
20
 
21
 
22
  st.title("Prection of Maimum Number of Repairs")
23
+ st.sidebar.header('Enter the Components Details here')
24
  import pandas as pd
25
  import numpy as np
26
  import pickle
 
33
  with open('manufacturer_le.pkl', 'rb') as file1:
34
  le = pickle.load(file1)
35
 
36
+ # DATA from user
37
+ def user_report():
38
+ manufacturer = st.sidebar.selectbox("Manufacturer",
39
+ ("JKL Company", "GHI Company","DEF Company","ABC Company","XYZ Company" ))
40
+ if manufacturer=='JKL Company':
41
+ manufacturer=3
42
+ elif manufacturer=="GHI Company":
43
+ manufacturer=2
44
+ elif manufacturer=="DEF Company":
45
+ manufacturer=1
46
+ elif manufacturer=="ABC Company":
47
+ manufacturer =0
48
+ else:
49
+ manufacturer=4
50
+ component_age = st.sidebar.slider('Component Age (in hours)', 100,250, 300 )
51
+ total_operating_hours = st.sidebar.slider('Total Operating Hours)', 400,1500, 500 )
52
+ operating_temperature = st.sidebar.slider('Operating Temperature', 70,80, 75 )
53
+ humidity = st.sidebar.slider('Humidity', 50,70, 55 )
54
+ Vibration_Level = st.sidebar.slider('Vibration Level', 2,4, 2 )
55
+ Pressure = st.sidebar.slider('Pressure', 28,32, 30 )
56
+ Power_Input_Voltage= st.sidebar.slider('Power Input Voltage (V)',105,120,115)
57
+ previous_number_of_repairs = st.sidebar.number_input('Enter the Previous Number of Repairs Undergone 0 to 5 )',min_value=0,max_value=5,step=1)
58
+ load_factor = st.sidebar.slider('Load Factor',3,10,4)
59
+ engine_speed=st.sidebar.slider('Engine Speed',7000,8000,7800)
60
+ Oil_Temperature=st.sidebar.slider('Oil Temperature',170,185,172)
61
+
62
+
63
+ user_report_data = {
64
+ 'Manufacturer': manufacturer,
65
+ 'Component_Age': component_age,
66
+ 'Total_Operating_Hours': total_operating_hours,
67
+ 'Operating_Temperature': operating_temperature,
68
+ 'Humidity': humidity,
69
+ 'Vibration_Level': Vibration_Level,
70
+ 'Pressure': Pressure,
71
+ 'Power_Input_Voltage': Power_Input_Voltage,
72
+ 'Previous_number_of_repairs': previous_number_of_repairs,
73
+ 'Load_Factor': load_factor,
74
+ 'Engine_Speed': engine_speed,
75
+ 'Oil_Temperature':Oil_Temperature
76
+ }
77
+ report_data = pd.DataFrame(user_report_data, index=[0])
78
+ return report_data
79
+
80
+ #Customer Data
81
+ user_data = user_report()
82
+ st.header("Component Details")
83
+ st.write(user_data)
84
+
85
 
86
  # define the prediction function
87
+ def predict_max_number_of_repairs(user_data):
88
 
89
  # encode the manufacturer using the loaded LabelEncoder object
90
+ #manufacturer_encoded = le.transform([manufacturer])[0]
91
+
92
+
 
 
 
 
 
 
 
 
 
 
 
 
93
 
94
  # make the prediction using the loaded model and input data
95
+ predicted_max_number_of_repairs = model.predict(user_data)
96
 
97
  # return the predicted max number of repairs as output
98
  return np.round(predicted_max_number_of_repairs[0])
99
  # Function calling
100
+ y_pred = predict_max_number_of_repairs(user_data)
101
+ st.header(y_pred)
102
+ #predict_max_number_of_repairs('ABC Company',100.00,1135,70.0,65,3.43,29.90,120,4,0.59,7398,170)