Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -20,7 +20,7 @@ warnings.filterwarnings('ignore')
|
|
20 |
|
21 |
|
22 |
st.title("Prection of Maimum Number of Repairs")
|
23 |
-
|
24 |
import pandas as pd
|
25 |
import numpy as np
|
26 |
import pickle
|
@@ -33,31 +33,70 @@ with open('max_repair_model.pkl', 'rb') as file:
|
|
33 |
with open('manufacturer_le.pkl', 'rb') as file1:
|
34 |
le = pickle.load(file1)
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
# define the prediction function
|
38 |
-
def predict_max_number_of_repairs(
|
39 |
|
40 |
# encode the manufacturer using the loaded LabelEncoder object
|
41 |
-
manufacturer_encoded = le.transform([manufacturer])[0]
|
42 |
-
|
43 |
-
|
44 |
-
input_data = pd.DataFrame({'Manufacturer': [manufacturer_encoded],
|
45 |
-
'Component_Age': [component_age],
|
46 |
-
'Total_Operating_Hours': [total_operating_hours],
|
47 |
-
'Operating_Temperature': [operating_temperature],
|
48 |
-
'Humidity': [humidity],
|
49 |
-
'Vibration_Level': [vibration_level],
|
50 |
-
'Pressure': [pressure],
|
51 |
-
'Power_Input_Voltage': [power_input_voltage],
|
52 |
-
'Previous_number_of_repairs': [previous_number_of_repairs],
|
53 |
-
'Load_Factor': [load_factor],
|
54 |
-
'Engine_Speed': [engine_speed],
|
55 |
-
'Oil_Temperature': [oil_temperature]})
|
56 |
|
57 |
# make the prediction using the loaded model and input data
|
58 |
-
predicted_max_number_of_repairs = model.predict(
|
59 |
|
60 |
# return the predicted max number of repairs as output
|
61 |
return np.round(predicted_max_number_of_repairs[0])
|
62 |
# Function calling
|
63 |
-
predict_max_number_of_repairs(
|
|
|
|
|
|
20 |
|
21 |
|
22 |
st.title("Prection of Maimum Number of Repairs")
|
23 |
+
st.sidebar.header('Enter the Components Details here')
|
24 |
import pandas as pd
|
25 |
import numpy as np
|
26 |
import pickle
|
|
|
33 |
with open('manufacturer_le.pkl', 'rb') as file1:
|
34 |
le = pickle.load(file1)
|
35 |
|
36 |
+
# DATA from user
|
37 |
+
def user_report():
|
38 |
+
manufacturer = st.sidebar.selectbox("Manufacturer",
|
39 |
+
("JKL Company", "GHI Company","DEF Company","ABC Company","XYZ Company" ))
|
40 |
+
if manufacturer=='JKL Company':
|
41 |
+
manufacturer=3
|
42 |
+
elif manufacturer=="GHI Company":
|
43 |
+
manufacturer=2
|
44 |
+
elif manufacturer=="DEF Company":
|
45 |
+
manufacturer=1
|
46 |
+
elif manufacturer=="ABC Company":
|
47 |
+
manufacturer =0
|
48 |
+
else:
|
49 |
+
manufacturer=4
|
50 |
+
component_age = st.sidebar.slider('Component Age (in hours)', 100,250, 300 )
|
51 |
+
total_operating_hours = st.sidebar.slider('Total Operating Hours)', 400,1500, 500 )
|
52 |
+
operating_temperature = st.sidebar.slider('Operating Temperature', 70,80, 75 )
|
53 |
+
humidity = st.sidebar.slider('Humidity', 50,70, 55 )
|
54 |
+
Vibration_Level = st.sidebar.slider('Vibration Level', 2,4, 2 )
|
55 |
+
Pressure = st.sidebar.slider('Pressure', 28,32, 30 )
|
56 |
+
Power_Input_Voltage= st.sidebar.slider('Power Input Voltage (V)',105,120,115)
|
57 |
+
previous_number_of_repairs = st.sidebar.number_input('Enter the Previous Number of Repairs Undergone 0 to 5 )',min_value=0,max_value=5,step=1)
|
58 |
+
load_factor = st.sidebar.slider('Load Factor',3,10,4)
|
59 |
+
engine_speed=st.sidebar.slider('Engine Speed',7000,8000,7800)
|
60 |
+
Oil_Temperature=st.sidebar.slider('Oil Temperature',170,185,172)
|
61 |
+
|
62 |
+
|
63 |
+
user_report_data = {
|
64 |
+
'Manufacturer': manufacturer,
|
65 |
+
'Component_Age': component_age,
|
66 |
+
'Total_Operating_Hours': total_operating_hours,
|
67 |
+
'Operating_Temperature': operating_temperature,
|
68 |
+
'Humidity': humidity,
|
69 |
+
'Vibration_Level': Vibration_Level,
|
70 |
+
'Pressure': Pressure,
|
71 |
+
'Power_Input_Voltage': Power_Input_Voltage,
|
72 |
+
'Previous_number_of_repairs': previous_number_of_repairs,
|
73 |
+
'Load_Factor': load_factor,
|
74 |
+
'Engine_Speed': engine_speed,
|
75 |
+
'Oil_Temperature':Oil_Temperature
|
76 |
+
}
|
77 |
+
report_data = pd.DataFrame(user_report_data, index=[0])
|
78 |
+
return report_data
|
79 |
+
|
80 |
+
#Customer Data
|
81 |
+
user_data = user_report()
|
82 |
+
st.header("Component Details")
|
83 |
+
st.write(user_data)
|
84 |
+
|
85 |
|
86 |
# define the prediction function
|
87 |
+
def predict_max_number_of_repairs(user_data):
|
88 |
|
89 |
# encode the manufacturer using the loaded LabelEncoder object
|
90 |
+
#manufacturer_encoded = le.transform([manufacturer])[0]
|
91 |
+
|
92 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
# make the prediction using the loaded model and input data
|
95 |
+
predicted_max_number_of_repairs = model.predict(user_data)
|
96 |
|
97 |
# return the predicted max number of repairs as output
|
98 |
return np.round(predicted_max_number_of_repairs[0])
|
99 |
# Function calling
|
100 |
+
y_pred = predict_max_number_of_repairs(user_data)
|
101 |
+
st.header(y_pred)
|
102 |
+
#predict_max_number_of_repairs('ABC Company',100.00,1135,70.0,65,3.43,29.90,120,4,0.59,7398,170)
|