saritha5 commited on
Commit
3b63347
·
1 Parent(s): 82fbc4d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -15
app.py CHANGED
@@ -107,23 +107,23 @@ def preprocess_dataset(X):
107
  return X_df
108
 
109
  def prediction(df):
110
- X = df.loc[:,df.columns!= "Rogue LRU/SRU (Target)"]
111
- y = df["Rogue LRU/SRU (Target)"]
112
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
113
- print(X_train.shape)
114
- print(X_test.shape)
115
- X_test_encoded = label_encoder(X_test)
116
  X_test_df = preprocess_dataset(X_test_encoded)
117
  x_model = loaded_model = tf.keras.models.load_model('my_model')
118
  y_pred = x_model.predict(X_test_df)
119
- predicition = []
120
- for i in list(y_pred):
121
- if i[0]<=0.8:
122
- predicition.append(0)
123
  else:
124
- predicition.append(1)
125
- X_test['Actual_time_to_repair'] = y_test
126
- X_test['Predicted_time_to_repair'] = predicition
127
  # X_test.to_csv(r'/content/drive/MyDrive/Colab Notebooks/HAL/rogue_test_data.csv')
128
- print(X_test.head())
129
- prediction(df)
 
107
  return X_df
108
 
109
  def prediction(df):
110
+ #X = df.loc[:,df.columns!= "Rogue LRU/SRU (Target)"]
111
+ #y = df["Rogue LRU/SRU (Target)"]
112
+ #X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
113
+ #print(X_train.shape)
114
+ #print(X_test.shape)
115
+ X_test_encoded = label_encoder(df)
116
  X_test_df = preprocess_dataset(X_test_encoded)
117
  x_model = loaded_model = tf.keras.models.load_model('my_model')
118
  y_pred = x_model.predict(X_test_df)
119
+ #predicition = []
120
+ #for i in list(y_pred):
121
+ if y_pred ==0:
122
+ st.write('Rouge Component is Good')
123
  else:
124
+ st.write('Rouge Component is not good')
125
+ #X_test['Actual_time_to_repair'] = y_test
126
+ #X_test['Predicted_time_to_repair'] = predicition
127
  # X_test.to_csv(r'/content/drive/MyDrive/Colab Notebooks/HAL/rogue_test_data.csv')
128
+ #print(X_test.head())
129
+ prediction(user_data)