Update app.py
Browse files
app.py
CHANGED
|
@@ -118,8 +118,13 @@ def prediction(df):
|
|
| 118 |
#x_model = tf.keras.models.load_model('my_model.h5')
|
| 119 |
try:
|
| 120 |
x_model = tf.keras.models.load_model('my_model.h5')
|
| 121 |
-
except:
|
| 122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
y_pred = x_model.predict(X_test_df)
|
| 124 |
#predicition = []
|
| 125 |
#for i in list(y_pred):
|
|
|
|
| 118 |
#x_model = tf.keras.models.load_model('my_model.h5')
|
| 119 |
try:
|
| 120 |
x_model = tf.keras.models.load_model('my_model.h5')
|
| 121 |
+
except (OSError, ValueError):
|
| 122 |
+
# Load the model as a TFSMLayer if .h5 loading fails
|
| 123 |
+
tfs_layer = tf.keras.layers.TFSMLayer('my_model', call_endpoint='serving_default')
|
| 124 |
+
# Create a new model using the TFSMLayer
|
| 125 |
+
inputs = tf.keras.Input(shape=(X_test_df.shape[1],))
|
| 126 |
+
outputs = tfs_layer(inputs)
|
| 127 |
+
x_model = tf.keras.Model(inputs=inputs, outputs=outputs)
|
| 128 |
y_pred = x_model.predict(X_test_df)
|
| 129 |
#predicition = []
|
| 130 |
#for i in list(y_pred):
|