File size: 5,849 Bytes
fb00789
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import simplejson
import tensorflow
import visualization_utils as vis_util
from PIL import Image
import numpy as np
from PIL import Image
import numpy as np
import label_map_util
import tensorflow as tf
from matplotlib import pyplot as plt
import time
import cv2
from numpy import asarray 
import streamlit as st 
st.title("Tag_Diciphering")
def prediction():
    total_time_start = time.time()


    def loadImageIntoNumpyArray(image):
        (im_width, im_height) = image.size
        if image.getdata().mode == "RGBA":
            image = image.convert('RGB')

        return asarray(image).reshape((im_height, im_width, 3)).astype(np.uint8)


    def main(image_path,model_path,model_PATH_TO_CKPT,path_to_labels):
        image = cv2.open(image_path)
        image_np = loadImageIntoNumpyArray(image)
        image_np_expanded = np.expand_dims(image_np, axis=0)
        label_map = label_map_util.load_labelmap(path_to_labels)
    #     print("label_map------->",type(label_map))
        categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=100, use_display_name=True)
        category_index = label_map_util.create_category_index(categories)
    #     print("category index-->",category_index)

        detection_graph = tf.Graph()
        with detection_graph.as_default():
            od_graph_def = tf.compat.v1.GraphDef()
            with tf.compat.v2.io.gfile.GFile(model_PATH_TO_CKPT, 'rb') as fid:
                serialized_graph = fid.read()
                od_graph_def.ParseFromString(serialized_graph)
                tf.import_graph_def(od_graph_def, name='')
        sess = tf.compat.v1.Session(graph=detection_graph)
        # Input tensor is the image
        image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
        # Output tensors are the detection boxes, scores, and classes
        # Each box represents a part of the image where a particular object was detected
        detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
        # Each score represents level of confidence for each of the objects.
        # The score is shown on the result image, together with the class label.
        detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
        detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
        # Number of objects detected
        num_detections = detection_graph.get_tensor_by_name('num_detections:0')
        (boxes, scores, classes, num) = sess.run(
            [detection_boxes, detection_scores, detection_classes, num_detections],
            feed_dict={image_tensor: image_np_expanded})
        vis_util.visualize_boxes_and_labels_on_image_array(
            image_np,
            np.squeeze(boxes),
            np.squeeze(classes).astype(np.int32),
            np.squeeze(scores),
            category_index,
            use_normalized_coordinates=True,
            line_thickness=8,
            min_score_thresh=0.1)
        #%matplotlib inline
        from matplotlib import pyplot as plt
    #     print("boxes:",boxes)
    #     print("class:",classes)
        objects = []
        threshold = 0.5
    #     print("category:",category_index)
        boxes = boxes[0]
        for index, value in enumerate(classes[0]):
            object_dict = {}
            if scores[0, index] > threshold:
                object_dict["class"] = (category_index.get(value)).get('name')
                object_dict["score"] = round(scores[0, index] * 100,2)
                box = tuple(boxes[index].tolist())
                ymin, xmin, ymax, xmax= box
                im_width,im_height = 360,360
                left, right, top, bottom = (xmin * im_width, xmax * im_width, 
                                  ymin * im_height, ymax * im_height)
                object_dict["box"] = (int(left), int(right), int(top), int(bottom))
                objects.append(object_dict)

        image_orignal = Image.open(image_path)
        image_np_orignal = loadImageIntoNumpyArray(image_orignal)


        fig, ax = plt.subplots(1,2)

        fig.suptitle('Tag Deciphering')

        ax[0].imshow(image_np_orignal,aspect='auto');
        ax[1].imshow(image_np,aspect='auto');


        return objects
    images = ["img1.jpg","img2.jpg","img3.jpg","img4.jpg"]
    with st.sidebar:
        st.write("choose an image")
        st.image(images)
    file = st.file_uploader('Upload an Image',type=(["jpeg","jpg","png"]))

    if file is None:
        st.write("Please upload an image file")
    else:
        image= Image.open(file)
        st.image(image,use_column_width = True)
        
    image_path = file
    model_path = "//inference"
    model_PATH_TO_CKPT = "frozen_inference_graph.pb"
    path_to_labels = "tf_label_map.pbtxt"

    result = main(image_path,model_path,model_PATH_TO_CKPT,path_to_labels)
    st.write(result)
    # print("result-",result)
    # list_to_be_sorted= [{'class': 'Y', 'score': 99.97, 'box': (157, 191, 269, 288)}, {'class': '6', 'score': 99.93, 'box': (158, 191, 247, 267)}, {'class': '9', 'score': 99.88, 'box': (156, 190, 179, 196)}, {'class': '4', 'score': 99.8, 'box': (156, 189, 198, 219)}, {'class': '1', 'score': 99.65, 'box': (157, 189, 222, 244)}, {'class': 'F', 'score': 63.4, 'box': (155, 185, 157, 175)}]
    newlist = sorted(result, key=lambda k: k['box'][3],reverse=False)

    text =''
    for each in newlist:
        if(each['score']>65):
            text += each['class']
    # print("text:",text)
    if(text!=""):
        text = text.replace("yellowTag", "") 
        result = text
    else:
        result = "No Vertical Tag Detected"
    response = {"predictions": [result]}
    total_time_end = time.time()
    print("total time : ",round((total_time_end-total_time_start),2))
    st.write(str(simplejson.dumps(response)))

prediction()