Spaces:
Configuration error
Configuration error
Update app.py
Browse files
app.py
CHANGED
@@ -101,26 +101,22 @@ def prediction(path_image):
|
|
101 |
ax[1].imshow(image_np,aspect='auto');
|
102 |
|
103 |
|
104 |
-
return
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
st.write("Please upload an image file")
|
113 |
-
else:
|
114 |
-
image= Image.open(file)
|
115 |
-
st.image(image,use_column_width = True)
|
116 |
|
117 |
-
image_path =
|
118 |
model_path = "//inference"
|
119 |
model_PATH_TO_CKPT = "frozen_inference_graph.pb"
|
120 |
path_to_labels = "tf_label_map.pbtxt"
|
121 |
|
122 |
result = main(image_path,model_path,model_PATH_TO_CKPT,path_to_labels)
|
123 |
-
|
124 |
# print("result-",result)
|
125 |
# list_to_be_sorted= [{'class': 'Y', 'score': 99.97, 'box': (157, 191, 269, 288)}, {'class': '6', 'score': 99.93, 'box': (158, 191, 247, 267)}, {'class': '9', 'score': 99.88, 'box': (156, 190, 179, 196)}, {'class': '4', 'score': 99.8, 'box': (156, 189, 198, 219)}, {'class': '1', 'score': 99.65, 'box': (157, 189, 222, 244)}, {'class': 'F', 'score': 63.4, 'box': (155, 185, 157, 175)}]
|
126 |
newlist = sorted(result, key=lambda k: k['box'][3],reverse=False)
|
@@ -140,4 +136,17 @@ def prediction(path_image):
|
|
140 |
print("total time : ",round((total_time_end-total_time_start),2))
|
141 |
st.write(str(simplejson.dumps(response)))
|
142 |
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
ax[1].imshow(image_np,aspect='auto');
|
102 |
|
103 |
|
104 |
+
return fig
|
105 |
+
inputs = gr.inputs.Image(type = 'filepath')
|
106 |
+
EXAMPLES = ["img1.jpg","img2.jpg","img3.jpg","img4.jpg"]
|
107 |
+
DESCRIPTION = """An image is occluded if the image is blocked by any object.
|
108 |
+
For example if an electric pole is filled with bushes,the image is occluded since it is not clear and blocked.
|
109 |
+
Mobil-net is used to train a model with occluded and non occluded images, so that it can correctly classify the images.
|
110 |
+
Occlusion detection can be used to filter unclear images and take safety measures."""
|
111 |
+
|
|
|
|
|
|
|
|
|
112 |
|
113 |
+
image_path = inputs
|
114 |
model_path = "//inference"
|
115 |
model_PATH_TO_CKPT = "frozen_inference_graph.pb"
|
116 |
path_to_labels = "tf_label_map.pbtxt"
|
117 |
|
118 |
result = main(image_path,model_path,model_PATH_TO_CKPT,path_to_labels)
|
119 |
+
|
120 |
# print("result-",result)
|
121 |
# list_to_be_sorted= [{'class': 'Y', 'score': 99.97, 'box': (157, 191, 269, 288)}, {'class': '6', 'score': 99.93, 'box': (158, 191, 247, 267)}, {'class': '9', 'score': 99.88, 'box': (156, 190, 179, 196)}, {'class': '4', 'score': 99.8, 'box': (156, 189, 198, 219)}, {'class': '1', 'score': 99.65, 'box': (157, 189, 222, 244)}, {'class': 'F', 'score': 63.4, 'box': (155, 185, 157, 175)}]
|
122 |
newlist = sorted(result, key=lambda k: k['box'][3],reverse=False)
|
|
|
136 |
print("total time : ",round((total_time_end-total_time_start),2))
|
137 |
st.write(str(simplejson.dumps(response)))
|
138 |
|
139 |
+
|
140 |
+
|
141 |
+
demo_app = gr.Interface(
|
142 |
+
fn=occ_prediction,
|
143 |
+
inputs=inputs,
|
144 |
+
outputs= "image",
|
145 |
+
title = "Tag Diciphering",
|
146 |
+
description = DESCRIPTION,
|
147 |
+
examples = EXAMPLES,
|
148 |
+
#cache_example = True,
|
149 |
+
#live = True,
|
150 |
+
theme = 'huggingface'
|
151 |
+
)
|
152 |
+
demo_app.launch()
|