File size: 2,458 Bytes
b7eedf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

import pickle
import os
import os.path as osp

# RGBD-Dataset
from .tartan import TartanAir

from .stream import ImageStream
from .stream import StereoStream
from .stream import RGBDStream

# streaming datasets for inference
from .tartan import TartanAirStream
from .tartan import TartanAirTestStream

def dataset_factory(dataset_list, **kwargs):
    """ create a combined dataset """

    from torch.utils.data import ConcatDataset

    dataset_map = { 'tartan': (TartanAir, ) }
    db_list = []
    for key in dataset_list:
        # cache datasets for faster future loading
        db = dataset_map[key][0](**kwargs)

        print("Dataset {} has {} images".format(key, len(db)))
        db_list.append(db)

    return ConcatDataset(db_list)
            

def create_datastream(dataset_path, **kwargs):
    """ create data_loader to stream images 1 by 1 """

    from torch.utils.data import DataLoader

    if osp.isfile(osp.join(dataset_path, 'calibration.txt')):
        db = ETH3DStream(dataset_path, **kwargs)

    elif osp.isdir(osp.join(dataset_path, 'image_left')):
        db = TartanAirStream(dataset_path, **kwargs)

    elif osp.isfile(osp.join(dataset_path, 'rgb.txt')):
        db = TUMStream(dataset_path, **kwargs)

    elif osp.isdir(osp.join(dataset_path, 'mav0')):
        db = EurocStream(dataset_path, **kwargs)

    elif osp.isfile(osp.join(dataset_path, 'calib.txt')):
        db = KITTIStream(dataset_path, **kwargs)

    else:
        # db = TartanAirStream(dataset_path, **kwargs)
        db = TartanAirTestStream(dataset_path, **kwargs)
    
    stream = DataLoader(db, shuffle=False, batch_size=1, num_workers=4)
    return stream


def create_imagestream(dataset_path, **kwargs):
    """ create data_loader to stream images 1 by 1 """
    from torch.utils.data import DataLoader

    db = ImageStream(dataset_path, **kwargs)
    return DataLoader(db, shuffle=False, batch_size=1, num_workers=4)

def create_stereostream(dataset_path, **kwargs):
    """ create data_loader to stream images 1 by 1 """
    from torch.utils.data import DataLoader

    db = StereoStream(dataset_path, **kwargs)
    return DataLoader(db, shuffle=False, batch_size=1, num_workers=4)

def create_rgbdstream(dataset_path, **kwargs):
    """ create data_loader to stream images 1 by 1 """
    from torch.utils.data import DataLoader

    db = RGBDStream(dataset_path, **kwargs)
    return DataLoader(db, shuffle=False, batch_size=1, num_workers=4)