Spaces:
Running
Running
File size: 6,873 Bytes
b7eedf7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
# change rainy drop func from
# https://github.com/EvoCargo/RaindropsOnWindshield/blob/main/raindrops_generator/raindrop/raindrop.py
import math
import random
from random import randint
import cv2
import numpy as np
from PIL import Image, ImageDraw, ImageFilter
from raindropper.config import cfg
def make_bezier(xys):
# xys should be a sequence of 2-tuples (Bezier control points)
n = len(xys)
combinations = pascal_row(n - 1)
def bezier(ts):
# This uses the generalized formula for bezier curves
# http://en.wikipedia.org/wiki/B%C3%A9zier_curve#Generalization
result = []
for t in ts:
tpowers = (t**i for i in range(n))
upowers = reversed([(1 - t)**i for i in range(n)])
coefs = [c * a * b for c, a, b in zip(combinations, tpowers, upowers)]
result.append(tuple(sum([coef * p for coef, p in zip(coefs, ps)]) for ps in zip(*xys)))
return result
return bezier
def pascal_row(n, memo={}):
# This returns the nth row of Pascal Triangle
if n in memo:
return memo[n]
result = [1]
x, numerator = 1, n
for denominator in range(1, n // 2 + 1):
x *= numerator
x /= denominator
result.append(x)
numerator -= 1
if n & 1 == 0:
result.extend(reversed(result[:-1]))
else:
result.extend(reversed(result))
memo[n] = result
return result
class Raindrop():
def __init__(self, key, centerxy=None, radius=None, shape=None):
# param key: a unique key identifying a drop
# param centerxy: tuple defining coordinates of raindrop center in the image
# param radius: radius of a drop
# param shape: int from 0 to 2 defining raindrop shape type
self.key = key
self.ifcol = False
self.col_with = []
self.center = centerxy
self.radius = radius
# self.blur_coeff = max(int(self.radius/3), 1)
# self.blur_coeff = max(int(cfg["maxR"] / self.radius), 1)
self.blur_coeff = 3
self.shape = shape
self.type = 'default'
# label map's WxH = 4*R , 5*R
self.labelmap = np.zeros((self.radius * 5, self.radius * 4))
self.alphamap = np.zeros((self.radius * 5, self.radius * 4))
self.background = None
self.texture = None
self.control_point = {}
self._create_label()
self.use_label = False
def setCollision(self, col, col_with):
self.ifcol = col
self.col_with = col_with
def updateTexture(self, bg):
# gaussian blur radius may be 1, 3, 5
radius_array = [1, 3]
blur_radius_idx = randint(0, 1)
blur_radius = radius_array[blur_radius_idx]
fg = (Image.fromarray(np.uint8(bg))).filter(ImageFilter.GaussianBlur(radius=blur_radius))
fg = np.asarray(fg)
# add fish eye effect to simulate the background
K = np.array([[30 * self.radius, 0, 2 * self.radius], [0., 20 * self.radius, 3 * self.radius], [0., 0., 1]])
D = np.array([0.0, 0.0, 0.0, 0.0])
Knew = K.copy()
Knew[(0, 1), (0, 1)] = math.pow(self.radius, 1 / 500) * 2 * Knew[(0, 1), (0, 1)]
fisheye = cv2.fisheye.undistortImage(fg, K, D=D, Knew=Knew)
tmp = np.expand_dims(self.alphamap, axis=-1)
tmp = np.concatenate((fisheye, tmp), axis=2)
self.texture = Image.fromarray(tmp.astype('uint8'), 'RGBA')
def _create_label(self):
self._createDefaultDrop()
def _createDefaultDrop(self):
"""create the raindrop Alpha Map according to its shape type update
raindrop label."""
if (self.shape == 0):
cv2.circle(self.labelmap, (self.radius * 2, self.radius * 3), int(self.radius), 128, -1)
self.alphamap = (Image.fromarray(np.uint8(self.labelmap))).filter(
ImageFilter.GaussianBlur(radius=self.blur_coeff))
self.alphamap = np.asarray(self.alphamap).astype(np.float)
self.alphamap = self.alphamap / np.max(self.alphamap) * 255.0
# set label map
self.labelmap[self.labelmap > 0] = 1
if (self.shape == 1):
cv2.circle(self.labelmap, (self.radius * 2, self.radius * 3), int(self.radius), 128, -1)
cv2.ellipse(self.labelmap, (self.radius * 2, self.radius * 3),
(self.radius, int(1.3 * math.sqrt(3) * self.radius)), 0, 180, 360, 128, -1)
self.alphamap = (Image.fromarray(np.uint8(self.labelmap))).filter(
ImageFilter.GaussianBlur(radius=self.blur_coeff))
self.alphamap = np.asarray(self.alphamap).astype(np.float)
self.alphamap = self.alphamap / np.max(self.alphamap) * 255.0
# set label map
self.labelmap[self.labelmap > 0] = 1
if (self.shape == 2):
C0 = random.uniform(0, 1)
C1 = random.uniform(0, 1)
A0 = random.uniform(0, 1)
A1 = random.uniform(2, 3)
D0 = random.uniform(2, 3)
D1 = random.uniform(2, 3)
B0 = random.uniform(2, 3)
B1 = random.uniform(0, 1)
self.control_point['A'] = (A0, A1)
self.control_point['B'] = (B0, B1)
self.control_point['C'] = (C0, C1)
self.control_point['D'] = (D0, D1)
img = Image.fromarray(np.uint8(self.labelmap), 'L')
draw = ImageDraw.Draw(img)
ts = [t / 100.0 for t in range(101)]
xys = [(self.radius * C0, self.radius * C1), (self.radius * B0, self.radius * B1),
(self.radius * D0, self.radius * D1)]
bezier = make_bezier(xys)
points = bezier(ts)
xys = [(self.radius * C0, self.radius * C1), (self.radius * A0, self.radius * A1),
(self.radius * D0, self.radius * D1)]
bezier = make_bezier(xys)
points.extend(bezier(ts))
draw.polygon(points, fill='gray')
self.alphamap = img.filter(ImageFilter.GaussianBlur(radius=self.blur_coeff))
self.alphamap = np.asarray(self.alphamap).astype(np.float)
self.alphamap = self.alphamap / np.max(self.alphamap) * 255.0
# set label map
self.labelmap[self.labelmap > 0] = 1
def setKey(self, key):
self.key = key
def getLabelMap(self):
return self.labelmap
def getAlphaMap(self):
return self.alphamap
def getTexture(self):
return self.texture
def getCenters(self):
return self.center
def getRadius(self):
return self.radius
def getKey(self):
return self.key
def getIfColli(self):
return self.ifcol
def getCollisionList(self):
return self.col_with
def getUseLabel(self):
return self.use_label
|