Spaces:
Runtime error
Runtime error
| import torch | |
| import numpy as np | |
| import pickle | |
| from typing import Optional | |
| import smplx | |
| from smplx.lbs import vertices2joints | |
| from smplx.utils import MANOOutput, to_tensor | |
| from smplx.vertex_ids import vertex_ids | |
| class MANO(smplx.MANOLayer): | |
| def __init__(self, *args, joint_regressor_extra: Optional[str] = None, **kwargs): | |
| """ | |
| Extension of the official MANO implementation to support more joints. | |
| Args: | |
| Same as MANOLayer. | |
| joint_regressor_extra (str): Path to extra joint regressor. | |
| """ | |
| super(MANO, self).__init__(*args, **kwargs) | |
| mano_to_openpose = [0, 13, 14, 15, 16, 1, 2, 3, 17, 4, 5, 6, 18, 10, 11, 12, 19, 7, 8, 9, 20] | |
| #2, 3, 5, 4, 1 | |
| if joint_regressor_extra is not None: | |
| self.register_buffer('joint_regressor_extra', torch.tensor(pickle.load(open(joint_regressor_extra, 'rb'), encoding='latin1'), dtype=torch.float32)) | |
| self.register_buffer('extra_joints_idxs', to_tensor(list(vertex_ids['mano'].values()), dtype=torch.long)) | |
| self.register_buffer('joint_map', torch.tensor(mano_to_openpose, dtype=torch.long)) | |
| def forward(self, *args, **kwargs) -> MANOOutput: | |
| """ | |
| Run forward pass. Same as MANO and also append an extra set of joints if joint_regressor_extra is specified. | |
| """ | |
| mano_output = super(MANO, self).forward(*args, **kwargs) | |
| extra_joints = torch.index_select(mano_output.vertices, 1, self.extra_joints_idxs) | |
| joints = torch.cat([mano_output.joints, extra_joints], dim=1) | |
| joints = joints[:, self.joint_map, :] | |
| if hasattr(self, 'joint_regressor_extra'): | |
| extra_joints = vertices2joints(self.joint_regressor_extra, mano_output.vertices) | |
| joints = torch.cat([joints, extra_joints], dim=1) | |
| mano_output.joints = joints | |
| return mano_output | |
| def query(self, hmr_output): | |
| batch_size = hmr_output['pred_rotmat'].shape[0] | |
| pred_rotmat = hmr_output['pred_rotmat'].reshape(batch_size, -1, 3, 3) | |
| pred_shape = hmr_output['pred_shape'].reshape(batch_size, 10) | |
| mano_output = self(global_orient=pred_rotmat[:, [0]], | |
| hand_pose = pred_rotmat[:, 1:], | |
| betas = pred_shape, | |
| pose2rot=False) | |
| return mano_output |