Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import spaces | |
| import os | |
| import subprocess | |
| import torch | |
| print(torch.__version__) | |
| print(torch.version.cuda) | |
| # download model | |
| print("Downloading model weights") | |
| os.system('wget -q https://huggingface.co/ThunderVVV/HaWoR/resolve/main/external/metric_depth_vit_large_800k.pth -P ./thirdparty/Metric3D/weights/') | |
| os.system('wget -q https://huggingface.co/ThunderVVV/HaWoR/resolve/main/external/droid.pth -P ./weights/external/') | |
| os.system('wget -q https://huggingface.co/ThunderVVV/HaWoR/resolve/main/external/detector.pt -P ./weights/external/') | |
| os.system('wget -q https://huggingface.co/ThunderVVV/HaWoR/resolve/main/hawor/checkpoints/hawor.ckpt -P ./weights/hawor/checkpoints/') | |
| os.system('wget -q https://huggingface.co/ThunderVVV/HaWoR/resolve/main/hawor/checkpoints/infiller.pt -P ./weights/hawor/checkpoints/') | |
| os.system('wget -q https://huggingface.co/ThunderVVV/HaWoR/resolve/main/hawor/model_config.yaml -P ./weights/hawor/') | |
| def install_cuda_toolkit(): | |
| # CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run" | |
| # CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run" | |
| CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda_12.1.0_530.30.02_linux.run" | |
| CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL) | |
| subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE]) | |
| subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE]) | |
| subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"]) | |
| os.environ["CUDA_HOME"] = "/usr/local/cuda" | |
| os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"]) | |
| os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % ( | |
| os.environ["CUDA_HOME"], | |
| "" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"], | |
| ) | |
| # Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range | |
| os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6" | |
| print("Compling other packages") | |
| install_cuda_toolkit() | |
| os.system('pip install ./thirdparty/DROID-SLAM') | |
| os.system('pip install ./thirdparty/DROID-SLAM/thirdparty/lietorch') | |
| os.environ["FORCE_CUDA"] = "1" | |
| os.system('pip install git+https://github.com/facebookresearch/pytorch3d.git@stable') | |
| import numpy as np | |
| from easydict import EasyDict | |
| from scripts.scripts_test_video.detect_track_video import detect_track_video | |
| from scripts.scripts_test_video.hawor_video import hawor_motion_estimation, hawor_infiller | |
| from scripts.scripts_test_video.hawor_slam import hawor_slam | |
| from hawor.utils.process import get_mano_faces, run_mano, run_mano_left | |
| from lib.eval_utils.custom_utils import load_slam_cam | |
| from lib.vis.run_vis2 import run_vis2_on_video, run_vis2_on_video_cam | |
| def render_reconstruction(input_video, img_focal): | |
| args = EasyDict() | |
| args.video_path = input_video | |
| args.input_type = 'file' | |
| args.checkpoint = './weights/hawor/checkpoints/hawor.ckpt' | |
| args.infiller_weight = './weights/hawor/checkpoints/infiller.pt' | |
| args.vis_mode = 'world' | |
| args.img_focal = img_focal | |
| start_idx, end_idx, seq_folder, imgfiles = detect_track_video(args) | |
| frame_chunks_all, img_focal = hawor_motion_estimation(args, start_idx, end_idx, seq_folder) | |
| hawor_slam(args, start_idx, end_idx) | |
| slam_path = os.path.join(seq_folder, f"SLAM/hawor_slam_w_scale_{start_idx}_{end_idx}.npz") | |
| R_w2c_sla_all, t_w2c_sla_all, R_c2w_sla_all, t_c2w_sla_all = load_slam_cam(slam_path) | |
| pred_trans, pred_rot, pred_hand_pose, pred_betas, pred_valid = hawor_infiller(args, start_idx, end_idx, frame_chunks_all) | |
| # vis sequence for this video | |
| hand2idx = { | |
| "right": 1, | |
| "left": 0 | |
| } | |
| vis_start = 0 | |
| vis_end = pred_trans.shape[1] - 1 | |
| # get faces | |
| faces = get_mano_faces() | |
| faces_new = np.array([[92, 38, 234], | |
| [234, 38, 239], | |
| [38, 122, 239], | |
| [239, 122, 279], | |
| [122, 118, 279], | |
| [279, 118, 215], | |
| [118, 117, 215], | |
| [215, 117, 214], | |
| [117, 119, 214], | |
| [214, 119, 121], | |
| [119, 120, 121], | |
| [121, 120, 78], | |
| [120, 108, 78], | |
| [78, 108, 79]]) | |
| faces_right = np.concatenate([faces, faces_new], axis=0) | |
| # get right hand vertices | |
| hand = 'right' | |
| hand_idx = hand2idx[hand] | |
| pred_glob_r = run_mano(pred_trans[hand_idx:hand_idx+1, vis_start:vis_end], pred_rot[hand_idx:hand_idx+1, vis_start:vis_end], pred_hand_pose[hand_idx:hand_idx+1, vis_start:vis_end], betas=pred_betas[hand_idx:hand_idx+1, vis_start:vis_end]) | |
| right_verts = pred_glob_r['vertices'][0] | |
| right_dict = { | |
| 'vertices': right_verts.unsqueeze(0), | |
| 'faces': faces_right, | |
| } | |
| # get left hand vertices | |
| faces_left = faces_right[:,[0,2,1]] | |
| hand = 'left' | |
| hand_idx = hand2idx[hand] | |
| pred_glob_l = run_mano_left(pred_trans[hand_idx:hand_idx+1, vis_start:vis_end], pred_rot[hand_idx:hand_idx+1, vis_start:vis_end], pred_hand_pose[hand_idx:hand_idx+1, vis_start:vis_end], betas=pred_betas[hand_idx:hand_idx+1, vis_start:vis_end]) | |
| left_verts = pred_glob_l['vertices'][0] | |
| left_dict = { | |
| 'vertices': left_verts.unsqueeze(0), | |
| 'faces': faces_left, | |
| } | |
| R_x = torch.tensor([[1, 0, 0], | |
| [0, -1, 0], | |
| [0, 0, -1]]).float() | |
| R_c2w_sla_all = torch.einsum('ij,njk->nik', R_x, R_c2w_sla_all) | |
| t_c2w_sla_all = torch.einsum('ij,nj->ni', R_x, t_c2w_sla_all) | |
| R_w2c_sla_all = R_c2w_sla_all.transpose(-1, -2) | |
| t_w2c_sla_all = -torch.einsum("bij,bj->bi", R_w2c_sla_all, t_c2w_sla_all) | |
| left_dict['vertices'] = torch.einsum('ij,btnj->btni', R_x, left_dict['vertices'].cpu()) | |
| right_dict['vertices'] = torch.einsum('ij,btnj->btni', R_x, right_dict['vertices'].cpu()) | |
| # Here we use aitviewer(https://github.com/eth-ait/aitviewer) for simple visualization. | |
| if args.vis_mode == 'world': | |
| output_pth = os.path.join(seq_folder, f"vis_{vis_start}_{vis_end}") | |
| if not os.path.exists(output_pth): | |
| os.makedirs(output_pth) | |
| image_names = imgfiles[vis_start:vis_end] | |
| print(f"vis {vis_start} to {vis_end}") | |
| vis_video_path = run_vis2_on_video(left_dict, right_dict, output_pth, img_focal, image_names, R_c2w=R_c2w_sla_all[vis_start:vis_end], t_c2w=t_c2w_sla_all[vis_start:vis_end], interactive=False) | |
| elif args.vis_mode == 'cam': | |
| # output_pth = os.path.join(seq_folder, f"vis_{vis_start}_{vis_end}") | |
| # if not os.path.exists(output_pth): | |
| # os.makedirs(output_pth) | |
| # image_names = imgfiles[vis_start:vis_end] | |
| # print(f"vis {vis_start} to {vis_end}") | |
| # run_vis2_on_video_cam(left_dict, right_dict, output_pth, img_focal, image_names, R_w2c=R_w2c_sla_all[vis_start:vis_end], t_w2c=t_w2c_sla_all[vis_start:vis_end]) | |
| raise NotImplementedError | |
| return vis_video_path | |
| header = (''' | |
| <div class="embed_hidden" style="text-align: center;"> | |
| <h1> <b>HaWoR</b>: World-Space Hand Motion Reconstruction from Egocentric Videos</h1> | |
| <h3> | |
| <a href="" target="_blank" rel="noopener noreferrer">Jinglei Zhang</a><sup>1</sup>, | |
| <a href="https://jiankangdeng.github.io/" target="_blank" rel="noopener noreferrer">Jiankang Deng</a><sup>2</sup>, | |
| <br> | |
| <a href="https://scholar.google.com/citations?user=syoPhv8AAAAJ&hl=en" target="_blank" rel="noopener noreferrer">Chao Ma</a><sup>1</sup>, | |
| <a href="https://rolpotamias.github.io" target="_blank" rel="noopener noreferrer">Rolandos Alexandros Potamias</a><sup>2</sup> | |
| </h3> | |
| <h3> | |
| <sup>1</sup>Shanghai Jiao Tong University; | |
| <sup>2</sup>Imperial College London | |
| </h3> | |
| </div> | |
| <div style="display:flex; gap: 0.3rem; justify-content: center; align-items: center;" align="center"> | |
| <a href='https://arxiv.org/abs/xxxx.xxxxx'><img src='https://img.shields.io/badge/Arxiv-xxxx.xxxxx-A42C25?style=flat&logo=arXiv&logoColor=A42C25'></a> | |
| <a href=''><img src='https://img.shields.io/badge/Paper-PDF-yellow?style=flat&logo=arXiv&logoColor=yellow'></a> | |
| <a href='https://hawor-project.github.io/'><img src='https://img.shields.io/badge/Project-Page-%23df5b46?style=flat&logo=Google%20chrome&logoColor=%23df5b46'></a> | |
| <a href='https://github.com/ThunderVVV/HaWoR'><img src='https://img.shields.io/badge/GitHub-Code-black?style=flat&logo=github&logoColor=white'></a> | |
| ''') | |
| with gr.Blocks(title="HaWoR: World-Space Hand Motion Reconstruction from Egocentric Videos", css=".gradio-container") as demo: | |
| gr.Markdown(header) | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_video = gr.Video(label="Input video", sources=["upload"]) | |
| img_focal = gr.Number(label="Focal Length", value=600) | |
| # threshold = gr.Slider(value=0.3, minimum=0.05, maximum=0.95, step=0.05, label='Detection Confidence Threshold') | |
| #nms = gr.Slider(value=0.5, minimum=0.05, maximum=0.95, step=0.05, label='IoU NMS Threshold') | |
| submit = gr.Button("Submit", variant="primary") | |
| with gr.Column(): | |
| reconstruction = gr.Video(label="Reconstruction",show_download_button=True) | |
| # hands_detected = gr.Textbox(label="Hands Detected") | |
| submit.click(fn=render_reconstruction, inputs=[input_video, img_focal], outputs=[reconstruction]) | |
| with gr.Row(): | |
| example_images = gr.Examples([ | |
| ['./example/video_0.mp4'] | |
| ], | |
| inputs=input_video) | |
| demo.launch(debug=True) |