Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import torch | |
| from torch.nn import functional as F | |
| def perspective_projection(points, rotation, translation, | |
| focal_length, camera_center, distortion=None): | |
| """ | |
| This function computes the perspective projection of a set of points. | |
| Input: | |
| points (bs, N, 3): 3D points | |
| rotation (bs, 3, 3): Camera rotation | |
| translation (bs, 3): Camera translation | |
| focal_length (bs,) or scalar: Focal length | |
| camera_center (bs, 2): Camera center | |
| """ | |
| batch_size = points.shape[0] | |
| # Extrinsic | |
| if rotation is not None: | |
| points = torch.einsum('bij,bkj->bki', rotation, points) | |
| if translation is not None: | |
| points = points + translation.unsqueeze(1) | |
| if distortion is not None: | |
| kc = distortion | |
| points = points[:,:,:2] / points[:,:,2:] | |
| r2 = points[:,:,0]**2 + points[:,:,1]**2 | |
| dx = (2 * kc[:,[2]] * points[:,:,0] * points[:,:,1] | |
| + kc[:,[3]] * (r2 + 2*points[:,:,0]**2)) | |
| dy = (2 * kc[:,[3]] * points[:,:,0] * points[:,:,1] | |
| + kc[:,[2]] * (r2 + 2*points[:,:,1]**2)) | |
| x = (1 + kc[:,[0]]*r2 + kc[:,[1]]*r2.pow(2) + kc[:,[4]]*r2.pow(3)) * points[:,:,0] + dx | |
| y = (1 + kc[:,[0]]*r2 + kc[:,[1]]*r2.pow(2) + kc[:,[4]]*r2.pow(3)) * points[:,:,1] + dy | |
| points = torch.stack([x, y, torch.ones_like(x)], dim=-1) | |
| # Intrinsic | |
| K = torch.zeros([batch_size, 3, 3], device=points.device) | |
| K[:,0,0] = focal_length | |
| K[:,1,1] = focal_length | |
| K[:,2,2] = 1. | |
| K[:,:-1, -1] = camera_center | |
| # Apply camera intrinsicsrf | |
| points = points / points[:,:,-1].unsqueeze(-1) | |
| projected_points = torch.einsum('bij,bkj->bki', K, points) | |
| projected_points = projected_points[:, :, :-1] | |
| return projected_points | |
| def avg_rot(rot): | |
| # input [B,...,3,3] --> output [...,3,3] | |
| rot = rot.mean(dim=0) | |
| U, _, V = torch.svd(rot) | |
| rot = U @ V.transpose(-1, -2) | |
| return rot | |
| def rot9d_to_rotmat(x): | |
| """Convert 9D rotation representation to 3x3 rotation matrix. | |
| Based on Levinson et al., "An Analysis of SVD for Deep Rotation Estimation" | |
| Input: | |
| (B,9) or (B,J*9) Batch of 9D rotation (interpreted as 3x3 est rotmat) | |
| Output: | |
| (B,3,3) or (B*J,3,3) Batch of corresponding rotation matrices | |
| """ | |
| x = x.view(-1,3,3) | |
| u, _, vh = torch.linalg.svd(x) | |
| sig = torch.eye(3).expand(len(x), 3, 3).clone() | |
| sig = sig.to(x.device) | |
| sig[:, -1, -1] = (u @ vh).det() | |
| R = u @ sig @ vh | |
| return R | |
| """ | |
| Deprecated in favor of: rotation_conversions.py | |
| Useful geometric operations, e.g. differentiable Rodrigues formula | |
| Parts of the code are taken from https://github.com/MandyMo/pytorch_HMR | |
| """ | |
| def batch_rodrigues(theta): | |
| """Convert axis-angle representation to rotation matrix. | |
| Args: | |
| theta: size = [B, 3] | |
| Returns: | |
| Rotation matrix corresponding to the quaternion -- size = [B, 3, 3] | |
| """ | |
| l1norm = torch.norm(theta + 1e-8, p = 2, dim = 1) | |
| angle = torch.unsqueeze(l1norm, -1) | |
| normalized = torch.div(theta, angle) | |
| angle = angle * 0.5 | |
| v_cos = torch.cos(angle) | |
| v_sin = torch.sin(angle) | |
| quat = torch.cat([v_cos, v_sin * normalized], dim = 1) | |
| return quat_to_rotmat(quat) | |
| def quat_to_rotmat(quat): | |
| """Convert quaternion coefficients to rotation matrix. | |
| Args: | |
| quat: size = [B, 4] 4 <===>(w, x, y, z) | |
| Returns: | |
| Rotation matrix corresponding to the quaternion -- size = [B, 3, 3] | |
| """ | |
| norm_quat = quat | |
| norm_quat = norm_quat/norm_quat.norm(p=2, dim=1, keepdim=True) | |
| w, x, y, z = norm_quat[:,0], norm_quat[:,1], norm_quat[:,2], norm_quat[:,3] | |
| B = quat.size(0) | |
| w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) | |
| wx, wy, wz = w*x, w*y, w*z | |
| xy, xz, yz = x*y, x*z, y*z | |
| rotMat = torch.stack([w2 + x2 - y2 - z2, 2*xy - 2*wz, 2*wy + 2*xz, | |
| 2*wz + 2*xy, w2 - x2 + y2 - z2, 2*yz - 2*wx, | |
| 2*xz - 2*wy, 2*wx + 2*yz, w2 - x2 - y2 + z2], dim=1).view(B, 3, 3) | |
| return rotMat | |
| def rot6d_to_rotmat(x): | |
| """Convert 6D rotation representation to 3x3 rotation matrix. | |
| Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019 | |
| Input: | |
| (B,6) Batch of 6-D rotation representations | |
| Output: | |
| (B,3,3) Batch of corresponding rotation matrices | |
| """ | |
| x = x.view(-1,3,2) | |
| a1 = x[:, :, 0] | |
| a2 = x[:, :, 1] | |
| b1 = F.normalize(a1) | |
| b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1) | |
| b3 = torch.cross(b1, b2) | |
| return torch.stack((b1, b2, b3), dim=-1) | |
| def rot6d_to_rotmat_hmr2(x: torch.Tensor) -> torch.Tensor: | |
| """ | |
| Convert 6D rotation representation to 3x3 rotation matrix. | |
| Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019 | |
| Args: | |
| x (torch.Tensor): (B,6) Batch of 6-D rotation representations. | |
| Returns: | |
| torch.Tensor: Batch of corresponding rotation matrices with shape (B,3,3). | |
| """ | |
| x = x.reshape(-1,2,3).permute(0, 2, 1).contiguous() | |
| a1 = x[:, :, 0] | |
| a2 = x[:, :, 1] | |
| b1 = F.normalize(a1) | |
| b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1) | |
| b3 = torch.cross(b1, b2) | |
| return torch.stack((b1, b2, b3), dim=-1) | |
| def rotmat_to_rot6d(rotmat): | |
| """ Inverse function of the above. | |
| Input: | |
| (B,3,3) Batch of corresponding rotation matrices | |
| Output: | |
| (B,6) Batch of 6-D rotation representations | |
| """ | |
| # rot6d = rotmat[:, :, :2] | |
| rot6d = rotmat[...,:2] | |
| rot6d = rot6d.reshape(rot6d.size(0), -1) | |
| return rot6d | |
| def rotation_matrix_to_angle_axis(rotation_matrix): | |
| """ | |
| This function is borrowed from https://github.com/kornia/kornia | |
| Convert 3x4 rotation matrix to Rodrigues vector | |
| Args: | |
| rotation_matrix (Tensor): rotation matrix. | |
| Returns: | |
| Tensor: Rodrigues vector transformation. | |
| Shape: | |
| - Input: :math:`(N, 3, 4)` | |
| - Output: :math:`(N, 3)` | |
| Example: | |
| >>> input = torch.rand(2, 3, 4) # Nx4x4 | |
| >>> output = tgm.rotation_matrix_to_angle_axis(input) # Nx3 | |
| """ | |
| if rotation_matrix.shape[1:] == (3,3): | |
| rot_mat = rotation_matrix.reshape(-1, 3, 3) | |
| hom = torch.tensor([0, 0, 1], dtype=torch.float32, | |
| device=rotation_matrix.device).reshape(1, 3, 1).expand(rot_mat.shape[0], -1, -1) | |
| rotation_matrix = torch.cat([rot_mat, hom], dim=-1) | |
| quaternion = rotation_matrix_to_quaternion(rotation_matrix) | |
| aa = quaternion_to_angle_axis(quaternion) | |
| aa[torch.isnan(aa)] = 0.0 | |
| return aa | |
| def quaternion_to_angle_axis(quaternion: torch.Tensor) -> torch.Tensor: | |
| """ | |
| This function is borrowed from https://github.com/kornia/kornia | |
| Convert quaternion vector to angle axis of rotation. | |
| Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h | |
| Args: | |
| quaternion (torch.Tensor): tensor with quaternions. | |
| Return: | |
| torch.Tensor: tensor with angle axis of rotation. | |
| Shape: | |
| - Input: :math:`(*, 4)` where `*` means, any number of dimensions | |
| - Output: :math:`(*, 3)` | |
| Example: | |
| >>> quaternion = torch.rand(2, 4) # Nx4 | |
| >>> angle_axis = tgm.quaternion_to_angle_axis(quaternion) # Nx3 | |
| """ | |
| if not torch.is_tensor(quaternion): | |
| raise TypeError("Input type is not a torch.Tensor. Got {}".format( | |
| type(quaternion))) | |
| if not quaternion.shape[-1] == 4: | |
| raise ValueError("Input must be a tensor of shape Nx4 or 4. Got {}" | |
| .format(quaternion.shape)) | |
| # unpack input and compute conversion | |
| q1: torch.Tensor = quaternion[..., 1] | |
| q2: torch.Tensor = quaternion[..., 2] | |
| q3: torch.Tensor = quaternion[..., 3] | |
| sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3 | |
| sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta) | |
| cos_theta: torch.Tensor = quaternion[..., 0] | |
| two_theta: torch.Tensor = 2.0 * torch.where( | |
| cos_theta < 0.0, | |
| torch.atan2(-sin_theta, -cos_theta), | |
| torch.atan2(sin_theta, cos_theta)) | |
| k_pos: torch.Tensor = two_theta / sin_theta | |
| k_neg: torch.Tensor = 2.0 * torch.ones_like(sin_theta) | |
| k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg) | |
| angle_axis: torch.Tensor = torch.zeros_like(quaternion)[..., :3] | |
| angle_axis[..., 0] += q1 * k | |
| angle_axis[..., 1] += q2 * k | |
| angle_axis[..., 2] += q3 * k | |
| return angle_axis | |
| def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6): | |
| """ | |
| This function is borrowed from https://github.com/kornia/kornia | |
| Convert 3x4 rotation matrix to 4d quaternion vector | |
| This algorithm is based on algorithm described in | |
| https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201 | |
| Args: | |
| rotation_matrix (Tensor): the rotation matrix to convert. | |
| Return: | |
| Tensor: the rotation in quaternion | |
| Shape: | |
| - Input: :math:`(N, 3, 4)` | |
| - Output: :math:`(N, 4)` | |
| Example: | |
| >>> input = torch.rand(4, 3, 4) # Nx3x4 | |
| >>> output = tgm.rotation_matrix_to_quaternion(input) # Nx4 | |
| """ | |
| if not torch.is_tensor(rotation_matrix): | |
| raise TypeError("Input type is not a torch.Tensor. Got {}".format( | |
| type(rotation_matrix))) | |
| if len(rotation_matrix.shape) > 3: | |
| raise ValueError( | |
| "Input size must be a three dimensional tensor. Got {}".format( | |
| rotation_matrix.shape)) | |
| if not rotation_matrix.shape[-2:] == (3, 4): | |
| raise ValueError( | |
| "Input size must be a N x 3 x 4 tensor. Got {}".format( | |
| rotation_matrix.shape)) | |
| rmat_t = torch.transpose(rotation_matrix, 1, 2) | |
| mask_d2 = rmat_t[:, 2, 2] < eps | |
| mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1] | |
| mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1] | |
| t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2] | |
| q0 = torch.stack([rmat_t[:, 1, 2] - rmat_t[:, 2, 1], | |
| t0, rmat_t[:, 0, 1] + rmat_t[:, 1, 0], | |
| rmat_t[:, 2, 0] + rmat_t[:, 0, 2]], -1) | |
| t0_rep = t0.repeat(4, 1).t() | |
| t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2] | |
| q1 = torch.stack([rmat_t[:, 2, 0] - rmat_t[:, 0, 2], | |
| rmat_t[:, 0, 1] + rmat_t[:, 1, 0], | |
| t1, rmat_t[:, 1, 2] + rmat_t[:, 2, 1]], -1) | |
| t1_rep = t1.repeat(4, 1).t() | |
| t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2] | |
| q2 = torch.stack([rmat_t[:, 0, 1] - rmat_t[:, 1, 0], | |
| rmat_t[:, 2, 0] + rmat_t[:, 0, 2], | |
| rmat_t[:, 1, 2] + rmat_t[:, 2, 1], t2], -1) | |
| t2_rep = t2.repeat(4, 1).t() | |
| t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2] | |
| q3 = torch.stack([t3, rmat_t[:, 1, 2] - rmat_t[:, 2, 1], | |
| rmat_t[:, 2, 0] - rmat_t[:, 0, 2], | |
| rmat_t[:, 0, 1] - rmat_t[:, 1, 0]], -1) | |
| t3_rep = t3.repeat(4, 1).t() | |
| mask_c0 = mask_d2 * mask_d0_d1 | |
| mask_c1 = mask_d2 * ~mask_d0_d1 | |
| mask_c2 = ~mask_d2 * mask_d0_nd1 | |
| mask_c3 = ~mask_d2 * ~mask_d0_nd1 | |
| mask_c0 = mask_c0.view(-1, 1).type_as(q0) | |
| mask_c1 = mask_c1.view(-1, 1).type_as(q1) | |
| mask_c2 = mask_c2.view(-1, 1).type_as(q2) | |
| mask_c3 = mask_c3.view(-1, 1).type_as(q3) | |
| q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3 | |
| q /= torch.sqrt(t0_rep * mask_c0 + t1_rep * mask_c1 + # noqa | |
| t2_rep * mask_c2 + t3_rep * mask_c3) # noqa | |
| q *= 0.5 | |
| return q | |
| def estimate_translation_np(S, joints_2d, joints_conf, focal_length=5000., img_size=224.): | |
| """ | |
| This function is borrowed from https://github.com/nkolot/SPIN/utils/geometry.py | |
| Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d. | |
| Input: | |
| S: (25, 3) 3D joint locations | |
| joints: (25, 3) 2D joint locations and confidence | |
| Returns: | |
| (3,) camera translation vector | |
| """ | |
| num_joints = S.shape[0] | |
| # focal length | |
| f = np.array([focal_length,focal_length]) | |
| # optical center | |
| center = np.array([img_size/2., img_size/2.]) | |
| # transformations | |
| Z = np.reshape(np.tile(S[:,2],(2,1)).T,-1) | |
| XY = np.reshape(S[:,0:2],-1) | |
| O = np.tile(center,num_joints) | |
| F = np.tile(f,num_joints) | |
| weight2 = np.reshape(np.tile(np.sqrt(joints_conf),(2,1)).T,-1) | |
| # least squares | |
| Q = np.array([F*np.tile(np.array([1,0]),num_joints), F*np.tile(np.array([0,1]),num_joints), O-np.reshape(joints_2d,-1)]).T | |
| c = (np.reshape(joints_2d,-1)-O)*Z - F*XY | |
| # weighted least squares | |
| W = np.diagflat(weight2) | |
| Q = np.dot(W,Q) | |
| c = np.dot(W,c) | |
| # square matrix | |
| A = np.dot(Q.T,Q) | |
| b = np.dot(Q.T,c) | |
| # solution | |
| trans = np.linalg.solve(A, b) | |
| return trans | |
| def estimate_translation(S, joints_2d, focal_length=5000., img_size=224.): | |
| """Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d. | |
| Input: | |
| S: (B, 49, 3) 3D joint locations | |
| joints: (B, 49, 3) 2D joint locations and confidence | |
| Returns: | |
| (B, 3) camera translation vectors | |
| """ | |
| device = S.device | |
| # Use only joints 25:49 (GT joints) | |
| S = S[:, -24:, :3].cpu().numpy() | |
| joints_2d = joints_2d[:, -24:, :].cpu().numpy() | |
| joints_conf = joints_2d[:, :, -1] | |
| joints_2d = joints_2d[:, :, :-1] | |
| trans = np.zeros((S.shape[0], 3), dtype=np.float32) | |
| # Find the translation for each example in the batch | |
| for i in range(S.shape[0]): | |
| S_i = S[i] | |
| joints_i = joints_2d[i] | |
| conf_i = joints_conf[i] | |
| trans[i] = estimate_translation_np(S_i, joints_i, conf_i, focal_length=focal_length, img_size=img_size) | |
| return torch.from_numpy(trans).to(device) | |