File size: 9,969 Bytes
080d211
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import json
import gradio as gr
import plotly.graph_objects as go
import plotly.express as px
import networkx as nx
from typing import List, Dict, Any


from langchain_openai.chat_models import ChatOpenAI
from dialog2graph.pipelines.model_storage import ModelStorage
from dialog2graph.pipelines.d2g_llm.pipeline import D2GLLMPipeline
from dialog2graph.pipelines.helpers.parse_data import PipelineRawDataType

# Initialize the pipeline
def initialize_pipeline():
    ms = ModelStorage()
    ms.add(
        "my_filling_model",
        config={"model_name": "gpt-3.5-turbo"},
        model_type=ChatOpenAI,
    )
    return D2GLLMPipeline("d2g_pipeline", model_storage=ms, filling_llm="my_filling_model")

def load_dialog_data(json_file: str) -> List[Dict[str, str]]:
    """Load dialog data from JSON file"""
    file_path = f"{json_file}.json"
    try:
        with open(file_path, 'r') as f:
            return json.load(f)
    except FileNotFoundError:
        gr.Error(f"File {file_path} not found!")
        return []
    except json.JSONDecodeError:
        gr.Error(f"Invalid JSON format in {file_path}!")
        return []

def create_network_visualization(graph: nx.Graph) -> go.Figure:
    """Create a Plotly network visualization from NetworkX graph"""
    
    # Get node positions using spring layout
    pos = nx.spring_layout(graph, k=1, iterations=50)
    
    # Extract node and edge information
    node_x = []
    node_y = []
    node_text = []
    node_ids = []
    
    for node in graph.nodes():
        x, y = pos[node]
        node_x.append(x)
        node_y.append(y)
        
        # Get node attributes if available
        node_attrs = graph.nodes[node]
        node_label = node_attrs.get('label', str(node))
        node_text.append(f"Node {node}<br>{node_label}")
        node_ids.append(node)
    
    # Create edge traces
    edge_x = []
    edge_y = []
    edge_info = []
    
    for edge in graph.edges():
        x0, y0 = pos[edge[0]]
        x1, y1 = pos[edge[1]]
        edge_x.extend([x0, x1, None])
        edge_y.extend([y0, y1, None])
        
        # Get edge attributes if available
        edge_attrs = graph.edges[edge]
        edge_label = edge_attrs.get('label', f"{edge[0]}-{edge[1]}")
        edge_info.append(edge_label)
    
    # Create the edge trace
    edge_trace = go.Scatter(
        x=edge_x, y=edge_y,
        line=dict(width=2, color='#888'),
        hoverinfo='none',
        mode='lines'
    )
    
    # Create the node trace
    node_trace = go.Scatter(
        x=node_x, y=node_y,
        mode='markers+text',
        hoverinfo='text',
        hovertext=node_text,
        text=[str(node) for node in node_ids],
        textposition="middle center",
        marker=dict(
            size=20,
            line=dict(width=2)
        )
    )
    
    # Color nodes by number of connections
    node_adjacencies = []
    for node in graph.nodes():
        node_adjacencies.append(len(list(graph.neighbors(node))))
    
    # Update marker color
    node_trace.marker = dict(
        showscale=True,
        colorscale='YlGnBu',
        reversescale=True,
        color=node_adjacencies,
        size=20,
        colorbar=dict(
            thickness=15,
            len=0.5,
            x=1.02,
            title="Node Connections",
            xanchor="left"
        ),
        line=dict(width=2)
    )
    
    # Create the figure
    fig = go.Figure(data=[edge_trace, node_trace],
                   layout=go.Layout(
                        title=dict(
                            text='Dialog Graph Visualization',
                            font=dict(
                                size=16,
                            ),
                        ),
                        showlegend=False,
                        hovermode='closest',
                        margin=dict(b=20,l=5,r=5,t=40),
                        annotations=[ dict(
                            text="Hover over nodes for more information",
                            showarrow=False,
                            xref="paper", yref="paper",
                            x=0.005, y=-0.002,
                            xanchor='left', yanchor='bottom',
                            font=dict(color="#888", size=12)
                        )],
                        xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
                        yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
                        plot_bgcolor='white'
                    ))
    
    return fig

def create_chat_visualization(dialog_data: List[Dict[str, str]]) -> str:
    """Create a chat-like visualization of the dialog"""
    chat_html = """
    <div style="max-height: 500px; overflow-y: auto; border: 1px solid #ddd; border-radius: 10px; padding: 20px; background-color: #f9f9f9;">
    """
    
    for i, turn in enumerate(dialog_data):
        participant = turn['participant']
        text = turn['text']
        
        if participant == 'assistant':
            # Assistant messages on the left with blue background
            chat_html += f"""
            <div style="display: flex; justify-content: flex-start; margin-bottom: 15px;">
                <div style="max-width: 70%; background-color: #e3f2fd; padding: 12px 16px; border-radius: 18px; border-bottom-left-radius: 4px; box-shadow: 0 1px 2px rgba(0,0,0,0.1);">
                    <div style="font-weight: bold; color: #1976d2; font-size: 12px; margin-bottom: 4px;">Assistant</div>
                    <div style="color: #333; line-height: 1.4;">{text}</div>
                </div>
            </div>
            """
        else:
            # User messages on the right with green background
            chat_html += f"""
            <div style="display: flex; justify-content: flex-end; margin-bottom: 15px;">
                <div style="max-width: 70%; background-color: #e8f5e8; padding: 12px 16px; border-radius: 18px; border-bottom-right-radius: 4px; box-shadow: 0 1px 2px rgba(0,0,0,0.1);">
                    <div style="font-weight: bold; color: #388e3c; font-size: 12px; margin-bottom: 4px;">User</div>
                    <div style="color: #333; line-height: 1.4;">{text}</div>
                </div>
            </div>
            """
    
    chat_html += "</div>"
    return chat_html

def process_dialog_and_visualize(dialog_choice: str) -> tuple:
    """Process the selected dialog and create visualization"""
    try:
        # Load the selected dialog data
        dialog_data = load_dialog_data(dialog_choice)
        
        if not dialog_data:
            return None, "Failed to load dialog data", ""
        
        # Initialize pipeline
        pipe = initialize_pipeline()
        
        # Process the data
        data = PipelineRawDataType(dialogs=dialog_data)
        graph, report = pipe.invoke(data)
        
        # Create visualization
        fig = create_network_visualization(graph.graph)
        
        # Create chat visualization
        chat_viz = create_chat_visualization(dialog_data)
        
        # Create summary information
        num_nodes = graph.graph.number_of_nodes()
        num_edges = graph.graph.number_of_edges()
        
        summary = f"""
        ## Graph Summary
        - **Number of nodes**: {num_nodes}
        - **Number of edges**: {num_edges}
        - **Dialog turns**: {len(dialog_data)}
        
        ## Processing Report
        Generated graph from {len(dialog_data)} dialog turns with {num_nodes} nodes and {num_edges} edges.
        """
        
        return fig, summary, chat_viz
        
    except Exception as e:
        return None, f"Error processing dialog: {str(e)}", ""

# Create the Gradio interface
def create_gradio_app():
    with gr.Blocks(title="Dialog2Graph Visualizer") as app:
        gr.Markdown("# Dialog2Graph Interactive Visualizer")
        gr.Markdown("Select a dialog dataset to process and visualize as a graph network using Plotly.")
        
        with gr.Row():
            with gr.Column(scale=1):
                dialog_selector = gr.Radio(
                    choices=["dialog1", "dialog2", "dialog3"],
                    label="Select Dialog Dataset",
                    value="dialog1",
                    info="Choose one of the available dialog datasets"
                )
                
                process_btn = gr.Button(
                    "Process Dialog & Generate Graph", 
                    variant="primary",
                    size="lg"
                )
                
                with gr.Accordion("Dialog Datasets Info", open=False):
                    gr.Markdown("""
                    - **dialog1**: Hotel booking conversation
                    - **dialog2**: Food delivery conversation  
                    - **dialog3**: Technical support conversation
                    """)
            
            with gr.Column(scale=3):
                plot_output = gr.Plot(label="Graph Visualization")
                
        with gr.Row():
            with gr.Column(scale=1):
                summary_output = gr.Markdown(label="Analysis Summary")
            
            with gr.Column(scale=1):
                gr.Markdown("### Dialog Conversation")
                chat_output = gr.HTML(label="Chat Visualization")
        
        # Event handlers
        process_btn.click(
            fn=process_dialog_and_visualize,
            inputs=[dialog_selector],
            outputs=[plot_output, summary_output, chat_output]
        )
        
        # Auto-process on selection change
        dialog_selector.change(
            fn=process_dialog_and_visualize,
            inputs=[dialog_selector],
            outputs=[plot_output, summary_output, chat_output]
        )
    
    return app

if __name__ == "__main__":
    app = create_gradio_app()
    app.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True,
        debug=True
    )