Spaces:
Running
Running
File size: 24,045 Bytes
8b2712e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 |
import gradio as gr
import nibabel as nib
import numpy as np
import os
from PIL import Image
import pandas as pd
import nrrd
import ants
from natsort import natsorted
from scipy.ndimage import zoom, rotate
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torchvision.models as models
import torchvision.transforms as transforms
from sklearn.metrics.pairwise import cosine_similarity
import cv2
def square_padd(original_data, square_size=(120,152, 184), order = 1):
# e.g. square_size = 256 by default
# takes a raw image as input
# returns a square (padded) image as output
# order = [int(x-1) for x in ss.rankdata(original_data.shape)]
# # print(order)
# data = original_data.transpose(order)
data= original_data
# print(original_data.shape)
# print(data.shape)
if data.shape[1]>data.shape[0] and data.shape[1]>data.shape[2]: # width>height
scale_percent = (square_size[1]/data.shape[1])*100
# print("dim1")
elif data.shape[2]>data.shape[0] and data.shape[2]>data.shape[1]: # width>height
scale_percent = (square_size[2]/data.shape[2])*100
# print("dim2")
else: # width<height
scale_percent = (square_size[0]/data.shape[0])*100
scale_percent = int(scale_percent)
# print(scale_percent)
width = int(data.shape[0] * scale_percent / 100); height = int(data.shape[1] * scale_percent / 100); depth = int(data.shape[2] * scale_percent / 100);
dim = (width, height, depth)
# print(dim)
zoomFactors = [square_size_axis/float(data_shape) for data_shape, square_size_axis in zip(data.shape, square_size)]
sect_mask = zoom(data,zoom = zoomFactors, order = order, )
# sect_mask = zoom(data,(scale_percent/100, scale_percent/100, scale_percent/100), order = order, )
# sect_mask = cv2.resize(data, dim, interpolation = cv2.INTER_AREA)
sect_padd = (np.ones(square_size))*data[0,0,0]
sect_padd[int((square_size[0]-np.shape(sect_mask)[0])/2):int((square_size[0]-np.shape(sect_mask)[0])/2)+np.shape(sect_mask)[0],
int((square_size[1]-np.shape(sect_mask)[1])/2):int((square_size[1]-np.shape(sect_mask)[1])/2)+np.shape(sect_mask)[1],
int((square_size[2]-np.shape(sect_mask)[2])/2):int((square_size[2]-np.shape(sect_mask)[2])/2)+np.shape(sect_mask)[2]] = sect_mask
return sect_padd
def square_padding_RGB(single_RGB,square_size=256):
# e.g. square_size = 256 by default
# takes a raw image as input
# returns a square (padded) image as output
# input: 2D image
# output: 2D resized padded image
# example: BNI images, HMS data
if single_RGB.shape[1]>single_RGB.shape[0]: # width>height
scale_percent = (square_size/single_RGB.shape[1])*100
else: # width<height
scale_percent = (square_size/single_RGB.shape[0])*100
width = int(single_RGB.shape[1] * scale_percent / 100); height = int(single_RGB.shape[0] * scale_percent / 100); dim = (width, height)
sect_mask = cv2.resize(single_RGB, dim, interpolation = cv2.INTER_AREA)
sect_padd = (np.ones((square_size,square_size,3)))*np.mean(single_RGB[:10,:10])
sect_padd[int((square_size-np.shape(sect_mask)[0])/2):int((square_size-np.shape(sect_mask)[0])/2)+np.shape(sect_mask)[0],
int((square_size-np.shape(sect_mask)[1])/2):int((square_size-np.shape(sect_mask)[1])/2)+np.shape(sect_mask)[1],:] = sect_mask
return sect_padd
def square_padding(single_gray,square_size=256):
# e.g. square_size = 256 by default
# takes a raw image as input
# returns a square (padded) image as output
# input: 2D image
# output: 2D resized padded image
# example: BNI images, HMS data
if len(np.shape(single_gray))>2:
return square_padding_RGB(single_gray[:,:,:3])
else:
# print("Single gray shape:", np.shape(single_gray))
if single_gray.shape[1]>single_gray.shape[0]: # width>height
scale_percent = (square_size/single_gray.shape[1])*100
else: # width<height
scale_percent = (square_size/single_gray.shape[0])*100
width = int(single_gray.shape[1] * scale_percent / 100); height = int(single_gray.shape[0] * scale_percent / 100); dim = (width, height)
# print("Dim::", dim)
sect_mask = cv2.resize(single_gray, dim, interpolation = cv2.INTER_AREA)
sect_padd = (np.zeros((square_size,square_size)))*single_gray[-20,-20]#find a better solution for single_gray[100,-100]
sect_padd[int((square_size-np.shape(sect_mask)[0])/2):int((square_size-np.shape(sect_mask)[0])/2)+np.shape(sect_mask)[0],
int((square_size-np.shape(sect_mask)[1])/2):int((square_size-np.shape(sect_mask)[1])/2)+np.shape(sect_mask)[1]] = sect_mask
return sect_padd
def affine_reg(fixed_image,moving_image,gauss_param=100):
# this function takes fixed and moving images as input and return affine transformation matrix
# fixed/moving images can be 2D/3D
# todo: add an option as flag to save the transformation matrix and displacement fields at the desired location to be able to apply the transforms later
mytx = ants.registration(fixed=fixed_image,
moving=moving_image,
type_of_transform='Affine',
reg_iterations = (gauss_param,gauss_param,gauss_param,gauss_param))
print('affine registration completed')
return mytx
def nonrigid_reg(fixed_image,mytx,type_of_transform='SyN',grad_step=0.25,reg_iterations=(50,50,50, ),flow_sigma=9,total_sigma=0.2):
# this function takes fixed image and affined tx matrix as input and return non-rigid transformation matrix
# fixed/moving images can be 2D/3D
# type of transform selection: https://antspy.readthedocs.io/en/latest/registration.html
# todo: scale the function to incorporate the extended parameters for type_of_transform
# todo: scale the function to incorporate the affine+non-rigid simultaneously in case of SyNRA
transform_type = {'SyN':{'grad_step':grad_step,'reg_iterations':reg_iterations,'flow_sigma':flow_sigma,'total_sigma':total_sigma},
'SyNRA':{'grad_step':grad_step,'reg_iterations':reg_iterations,'flow_sigma':flow_sigma,'total_sigma':total_sigma}}
mytx_non_rigid = ants.registration(fixed = fixed_image,
moving=mytx['warpedmovout'],
type_of_transform=type_of_transform,
grad_step=transform_type[type_of_transform]['grad_step'],
reg_iterations=transform_type[type_of_transform]['reg_iterations'],
flow_sigma=transform_type[type_of_transform]['flow_sigma'],
total_sigma=transform_type[type_of_transform]['total_sigma'])
print('non-rigid registration completed')
return mytx_non_rigid
def affine_reg(fixed_image,moving_image,gauss_param=100):
# this function takes fixed and moving images as input and return affine transformation matrix
# fixed/moving images can be 2D/3D
# todo: add an option as flag to save the transformation matrix and displacement fields at the desired location to be able to apply the transforms later
mytx = ants.registration(fixed=fixed_image,
moving=moving_image,
type_of_transform='Affine',
reg_iterations = (gauss_param,gauss_param,gauss_param,gauss_param))
print('affine registration completed')
return mytx
def nonrigid_reg(fixed_image,mytx,type_of_transform='SyN',grad_step=0.25,reg_iterations=(50,50,50, ),flow_sigma=9,total_sigma=0.2):
# this function takes fixed image and affined tx matrix as input and return non-rigid transformation matrix
# fixed/moving images can be 2D/3D
# type of transform selection: https://antspy.readthedocs.io/en/latest/registration.html
# todo: scale the function to incorporate the extended parameters for type_of_transform
# todo: scale the function to incorporate the affine+non-rigid simultaneously in case of SyNRA
transform_type = {'SyN':{'grad_step':grad_step,'reg_iterations':reg_iterations,'flow_sigma':flow_sigma,'total_sigma':total_sigma},
'SyNRA':{'grad_step':grad_step,'reg_iterations':reg_iterations,'flow_sigma':flow_sigma,'total_sigma':total_sigma}}
mytx_non_rigid = ants.registration(fixed = fixed_image,
moving=mytx['warpedmovout'],
type_of_transform=type_of_transform,
grad_step=transform_type[type_of_transform]['grad_step'],
reg_iterations=transform_type[type_of_transform]['reg_iterations'],
flow_sigma=transform_type[type_of_transform]['flow_sigma'],
total_sigma=transform_type[type_of_transform]['total_sigma'])
print('non-rigid registration completed')
return mytx_non_rigid
def run_3D_registration(user_section, ):
global allen_atlas_ccf, allen_template_ccf
template_atlas = allen_atlas_ccf
template_section = allen_template_ccf
template_atlas = np.uint16(template_atlas*255)
user_section = square_padd(user_section, (60, 76, 92))
template_atlas = square_padd(template_atlas, user_section.shape)
template_section = square_padd(template_section, user_section.shape)
fixed_image = ants.from_numpy(user_section)
moving_atlas_ants = ants.from_numpy(template_atlas)
moving_image = ants.from_numpy(template_section)
mytx = affine_reg(fixed_image,moving_image)
mytx_non_rigid = nonrigid_reg(fixed_image,mytx)
affined_fixed_atlas = ants.apply_transforms(fixed=fixed_image,
moving=moving_image,
transformlist=mytx['fwdtransforms'],
interpolator='nearestNeighbor')
nonrigid_fixed_atlas = ants.apply_transforms(fixed=fixed_image,
moving=affined_fixed_atlas,
transformlist=mytx_non_rigid['fwdtransforms'],
interpolator='nearestNeighbor')
gallery_images = load_gallery_images()
transformed_images = []
if not(os.path.exists("Overlaped_registered")):
os.mkdir("Overlaped_registered")
registered = nonrigid_fixed_atlas.numpy()/255
for id in list(range((registered.shape[0]//2)-15, (registered.shape[0]//2)+15, 2)):
print(id)
plt.imsave(f'Overlaped_registered/{id}.png',registered[id, :, :], cmap = 'gray' )
transformed_images.append(f'Overlaped_registered/{id}.png')
return transformed_images
def run_2D_registration(user_section, slice_idx):
global allen_atlas_ccf, allen_template_ccf, gallery_selected_data
template_atlas = allen_atlas_ccf
template_section = allen_template_ccf
template_atlas = allen_atlas_ccf[slice_idx,:,:]
template_section = allen_template_ccf[slice_idx,:,:]
# colored_atlas = colored_atlas[slice_idx,:,:]
print(np.shape(template_atlas), np.shape(template_section))
user_section = square_padding(user_section)
template_atlas = np.uint16(template_atlas*255)
template_atlas = square_padding(template_atlas)
template_section = square_padding(template_section)
fixed_image = ants.from_numpy(user_section)
moving_atlas_ants = ants.from_numpy(template_atlas)
moving_image = ants.from_numpy(template_section)
mytx = affine_reg(fixed_image,moving_image)
mytx_non_rigid = nonrigid_reg(fixed_image,mytx)
gallery_imgs = natsorted(load_gallery_images())
moving_gallery_img = ants.from_numpy(square_padding(plt.imread(gallery_imgs[gallery_selected_data])))
affined_fixed_atlas = ants.apply_transforms(fixed=fixed_image,
moving=moving_image,
transformlist=mytx['fwdtransforms'],
interpolator='nearestNeighbor')
nonrigid_fixed_atlas = ants.apply_transforms(fixed=fixed_image,
moving=affined_fixed_atlas,
transformlist=mytx_non_rigid['fwdtransforms'],
interpolator='nearestNeighbor')
gallery_images = load_gallery_images()
transformed_images = []
if not(os.path.exists("Overlaped_registered")):
os.mkdir("Overlaped_registered")
plt.imsave(f'Overlaped_registered/registered_slice.png',nonrigid_fixed_atlas.numpy()/255, cmap = 'gray')
return ['Overlaped_registered/registered_slice.png']
def embeddings_classifier(user_section, atlas_embeddings,atlas_labels):
class SliceEncoder(nn.Module):
def __init__(self):
super(SliceEncoder, self).__init__()
base = models.resnet18(pretrained=True)
self.backbone = nn.Sequential(*list(base.children())[:-1]) # Remove final FC layer
def forward(self, x):
x = self.backbone(x) # Output shape: (B, 512, 1, 1)
return x.view(x.size(0), -1) # Flatten to (B, 512)
# Transform
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
# Feature extraction utility
def extract_embedding(img_array, encoder, transform):
img = Image.fromarray(((img_array) * 255).astype(np.uint8)).convert('RGB')
img_tensor = transform(img).unsqueeze(0).to(device)
with torch.no_grad():
embedding = encoder(img_tensor)
return embedding.cpu().numpy().flatten()
# Prepare device and model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
encoder = SliceEncoder().to(device).eval()
# Precompute atlas embeddings
query_emb = extract_embedding(user_section, encoder, transform).reshape(1, -1)
sims = cosine_similarity(query_emb, atlas_embeddings)[0]
pred_idx = np.argmax(sims)
pred_gt = atlas_labels[pred_idx]
return int(pred_gt)
def gray_scale(image):
# input: a 2D RGB image (x,y,z)
# output: a grayscale image (x,y)
# todo: fix the depth issue of pixels
if len(np.shape(image))>2:
return cv2.cvtColor(image[:,:,:3], cv2.COLOR_RGB2GRAY)
else:
return image
def atlas_slice_prediction(user_section, axis = 'coronal'):
user_section = gray_scale(square_padding(gray_scale(user_section)))
user_section = gray_scale(user_section)
user_section = square_padding(user_section, 224)
user_section = (user_section - np.min(user_section))/((np.max(user_section) - np.min(user_section)))
print("Loading model")
atlas_embeddings = np.load(f"registration/atlas_embeddings_{axis}.npy")
atlas_labels = np.load(f"registration/atlas_labels_{axis}.npy")
idx = embeddings_classifier(user_section, atlas_embeddings,atlas_labels)
return idx
example_files = [
["./resampled_green_25.nii.gz", "CCF registered Sample", "3D"],
["./Brain_1.png", "Custom Sample", "2D"],
# ["examples/sample3.nii.gz"]
]
# Global variables
coronal_slices = []
last_probabilities = []
prob_df = pd.DataFrame()
vol = None
slice_idx = None
# Target cell types
cell_types = [
"ABC.NN", "Astro.TE.NN", "CLA.EPd.CTX.Car3.Glut", "Endo.NN", "L2.3.IT.CTX.Glut",
"L4.5.IT.CTX.Glut", "L5.ET.CTX.Glut", "L5.IT.CTX.Glut", "L5.NP.CTX.Glut", "L6.CT.CTX.Glut",
"L6.IT.CTX.Glut", "L6b.CTX.Glut", "Lamp5.Gaba", "Lamp5.Lhx6.Gaba", "Lymphoid.NN", "Microglia.NN",
"OPC.NN", "Oligo.NN", "Peri.NN", "Pvalb.Gaba", "Pvalb.chandelier.Gaba", "SMC.NN", "Sncg.Gaba",
"Sst.Chodl.Gaba", "Sst.Gaba", "VLMC.NN", "Vip.Gaba"
]
actual_ids = [30,52,71,91,104,109,118,126,131,137,141,164,178,182,197,208,218,226,232,242,244,248,256,262,270,282,293,297,308,323,339,344,350,355,364,372,379,389,395,401,410,415,418,424,429,434,440,444,469,479,487,509]
gallery_ids = [5,6,8,9,10,11,12,13,14,15,16,17,18,19,24,25,26,27,28,29,30,31,32,33,35,36,37,38,39,40,42,43,44,45,46,47,48,49,50,51,52,54,55,56,57,58,59,60,61,62,64,66,67]
# gallery_ids.reverse()
allen_atlas_ccf, header = nrrd.read('./registration/annotation_25.nrrd')
allen_template_ccf, _ = nrrd.read("./registration/average_template_25.nrrd")
# colored_atlas,_ = nrrd.read('./registration/colored_atlas_turbo.nrrd')
gallery_selected_data = None
def load_nifti_or_png(file, sample_type, data_type):
global coronal_slices, vol, slice_idx, gallery_selected_data
if file.name.endswith(".nii") or file.name.endswith(".nii.gz"):
img = nib.load(file.name)
vol = img.get_fdata()
coronal_slices = [vol[i, :, :] for i in range(vol.shape[0])]
if data_type == "2D":
mid_index = vol.shape[0] // 2
slice_img = Image.fromarray((coronal_slices[mid_index] / np.max(coronal_slices[mid_index]) * 255).astype(np.uint8))
gallery_images = load_gallery_images()
return (
slice_img,
gr.update(visible=False),
gallery_images,
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=(sample_type == "Custom Sample"))
)
else: # 3D with actual_ids only
coronal_slices = [vol[i, :, :] for i in actual_ids]
idx = len(actual_ids) // 2 # Mid of actual_ids
slice_img = Image.fromarray((coronal_slices[idx] / np.max(coronal_slices[idx]) * 255).astype(np.uint8))
gallery_images = load_gallery_images()
gallery_images = natsorted(gallery_images)
return (
slice_img,
gr.update(visible=True, minimum=0, maximum=len(coronal_slices)-1, value=idx),
gallery_images,
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=(sample_type == "Custom Sample"))
)
else:
img = Image.open(file.name).convert("L")
vol = np.array(img)
coronal_slices = [np.array(img)]
gallery_images = natsorted(load_gallery_images())
idx = atlas_slice_prediction(np.array(img))
slice_idx = idx
closest_actual_idx = min(actual_ids, key=lambda x: abs(x - idx))
gallery_index = actual_ids.index(closest_actual_idx)
print(gallery_index, len(actual_ids) -(gallery_index))
gallery_selected_data = len(actual_ids) -(gallery_index)
return (
img,
gr.update(visible=False),
gr.update(selected_index=len(actual_ids) -(gallery_index) if gallery_index < len(gallery_ids) else 0, visible = True),
# gr.update(value=gallery_images, selected_index=len(actual_ids) -(gallery_index)), # gallery
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=(sample_type == "Custom Sample"))
)
def update_slice(index):
if not coronal_slices:
return None, None, None
slice_img = Image.fromarray((coronal_slices[index] / np.max(coronal_slices[index]) * 255).astype(np.uint8))
gallery_selection = gr.update(selected_index=len(gallery_ids) - index if index < len(gallery_ids) else 0)
if last_probabilities:
noise = np.random.normal(0, 0.01, size=len(last_probabilities))
new_probs = np.clip(np.array(last_probabilities) + noise, 0, None)
new_probs /= new_probs.sum()
else:
new_probs = []
return slice_img, plot_probabilities(new_probs), gallery_selection
def load_gallery_images():
folder = "Overlapped_updated"
images = []
if os.path.exists(folder):
for fname in sorted(os.listdir(folder)):
if fname.lower().endswith(('.png', '.jpg', '.jpeg')):
images.append(os.path.join(folder, fname))
return images
def generate_random_probabilities():
probs = np.random.rand(len(cell_types))
low_indices = np.random.choice(len(probs), size=5, replace=False)
for idx in low_indices:
probs[idx] = np.random.rand() * 0.01
probs /= probs.sum()
return probs.tolist()
def plot_probabilities(probabilities):
if len(probabilities) < 1:
return None
prob_df = pd.DataFrame({"labels": cell_types, "values": probabilities})
prob_df.to_csv('Cell_types_predictions.csv', index=False)
return prob_df
def run_mapping():
global last_probabilities
last_probabilities = generate_random_probabilities()
return plot_probabilities(last_probabilities), gr.update(visible=True)
def run_registration(data_type, selected_idx):
global vol, slice_idx
print("Running registration logic here..., Vol shape::", vol.shape)
if data_type == "3D":
gallery_images = run_3D_registration(vol)
else:
gallery_images = run_2D_registration(vol, slice_idx)
return gallery_images
return "Registration complete!"
def download_csv():
return 'Cell_types_predictions.csv'
def handle_data_type_change(dt):
if dt == "2D":
return gr.update(visible=False)
else:
return gr.update(visible=True, minimum=0, maximum=len(actual_ids)-1, value=len(actual_ids)//2)
def on_select(evt: gr.SelectData):
gallery_selected_data = evt.index
gallery_images = natsorted(load_gallery_images())
with gr.Blocks() as demo:
gr.Markdown("# Map My Sections")
gr.Markdown("### Step 1: Upload your sample and choose type")
with gr.Row():
nifti_file = gr.File(label="File Upload")
with gr.Column():
sample_type = gr.Dropdown(choices=["CCF registered Sample", "Custom Sample"], value="CCF registered Sample", label="Sample Type")
data_type = gr.Radio(choices=["2D", "3D"], value="3D", label="Data Type")
gr.Examples(examples=example_files, inputs=[nifti_file, sample_type, data_type], label="Try one of our example samples")
with gr.Row(visible=False) as slice_row:
with gr.Column(scale=1):
gr.Markdown("### Step 2: Visualizing your uploaded sample")
image_display = gr.Image(height=450)
slice_slider = gr.Slider(minimum=0, maximum=0, value=0, step=1, label="Slices", visible=False)
with gr.Column(scale=1):
gr.Markdown("### Step 3: Visualizing Allen Brain Cell Types Atlas")
gallery = gr.Gallery(label="ABC Atlas", value = gallery_images,)
gr.Markdown("**Step 4: Run cell type mapping**")
with gr.Row():
run_button = gr.Button("Run Mapping")
reg_button = gr.Button("Run Registration", visible=False)
with gr.Column(visible=False) as plot_row:
gr.Markdown("### Step 5: Quantitative results of the mapping model.")
prob_plot = gr.BarPlot(prob_df, x="labels", y="values", title="Cell Type Probabilities", scroll_to_output=True, x_label_angle=-90, height=400)
gr.Markdown("### Step 6: Download Results.")
download_button = gr.DownloadButton(label="Download Results", value='Cell_types_predictions.csv')
nifti_file.change(
load_nifti_or_png,
inputs=[nifti_file, sample_type, data_type],
outputs=[image_display, slice_slider, gallery, slice_row, plot_row, reg_button]
)
sample_type.change(
lambda s: (gr.update(visible=True), gr.update(visible=(s == "Custom Sample"))),
inputs=sample_type,
outputs=[slice_row, reg_button]
)
data_type.change(
handle_data_type_change,
inputs=data_type,
outputs=slice_slider
)
gallery.select(on_select, None, None)
slice_slider.change(update_slice, inputs=slice_slider, outputs=[image_display, prob_plot, gallery])
run_button.click(run_mapping, outputs=[prob_plot, plot_row])
reg_button.click(run_registration,inputs = [data_type], outputs=[gallery])
demo.launch() |