Spaces:
Running
Running
Update src/translate/Translate.py
Browse files- src/translate/Translate.py +8 -12
src/translate/Translate.py
CHANGED
@@ -7,17 +7,6 @@ from transformers import pipeline
|
|
7 |
|
8 |
METHOD = "TRANSLATE"
|
9 |
|
10 |
-
# Load models and tokenizers
|
11 |
-
tokenizerROMENG = AutoTokenizer.from_pretrained("BlackKakapo/opus-mt-ro-en")
|
12 |
-
modelROMENG = AutoModelForSeq2SeqLM.from_pretrained("BlackKakapo/opus-mt-ro-en")
|
13 |
-
|
14 |
-
tokenizerENGROM = AutoTokenizer.from_pretrained("BlackKakapo/opus-mt-en-ro")
|
15 |
-
modelENGROM = AutoModelForSeq2SeqLM.from_pretrained("BlackKakapo/opus-mt-en-ro")
|
16 |
-
|
17 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
-
modelROMENG.to(device)
|
19 |
-
modelENGROM.to(device)
|
20 |
-
|
21 |
def paraphraseTranslateMethod(requestValue: str, model: str):
|
22 |
exception = ExceptionCustom.checkForException(requestValue, METHOD)
|
23 |
if exception:
|
@@ -25,9 +14,13 @@ def paraphraseTranslateMethod(requestValue: str, model: str):
|
|
25 |
|
26 |
tokenized_sent_list = sent_tokenize(requestValue)
|
27 |
result_value = []
|
28 |
-
|
|
|
29 |
for SENTENCE in tokenized_sent_list:
|
30 |
if model == 'roen':
|
|
|
|
|
|
|
31 |
input_ids = tokenizerROMENG(SENTENCE, return_tensors='pt').to(device)
|
32 |
output = modelROMENG.generate(
|
33 |
input_ids=input_ids.input_ids,
|
@@ -39,6 +32,9 @@ def paraphraseTranslateMethod(requestValue: str, model: str):
|
|
39 |
)
|
40 |
result = tokenizerROMENG.batch_decode(output, skip_special_tokens=True)[0]
|
41 |
else:
|
|
|
|
|
|
|
42 |
input_ids = tokenizerENGROM(SENTENCE, return_tensors='pt').to(device)
|
43 |
output = modelENGROM.generate(
|
44 |
input_ids=input_ids.input_ids,
|
|
|
7 |
|
8 |
METHOD = "TRANSLATE"
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
def paraphraseTranslateMethod(requestValue: str, model: str):
|
11 |
exception = ExceptionCustom.checkForException(requestValue, METHOD)
|
12 |
if exception:
|
|
|
14 |
|
15 |
tokenized_sent_list = sent_tokenize(requestValue)
|
16 |
result_value = []
|
17 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
+
|
19 |
for SENTENCE in tokenized_sent_list:
|
20 |
if model == 'roen':
|
21 |
+
tokenizerROMENG = AutoTokenizer.from_pretrained("BlackKakapo/opus-mt-ro-en")
|
22 |
+
modelROMENG = AutoModelForSeq2SeqLM.from_pretrained("BlackKakapo/opus-mt-ro-en")
|
23 |
+
modelROMENG.to(device)
|
24 |
input_ids = tokenizerROMENG(SENTENCE, return_tensors='pt').to(device)
|
25 |
output = modelROMENG.generate(
|
26 |
input_ids=input_ids.input_ids,
|
|
|
32 |
)
|
33 |
result = tokenizerROMENG.batch_decode(output, skip_special_tokens=True)[0]
|
34 |
else:
|
35 |
+
tokenizerENGROM = AutoTokenizer.from_pretrained("BlackKakapo/opus-mt-en-ro")
|
36 |
+
modelENGROM = AutoModelForSeq2SeqLM.from_pretrained("BlackKakapo/opus-mt-en-ro")
|
37 |
+
modelENGROM.to(device)
|
38 |
input_ids = tokenizerENGROM(SENTENCE, return_tensors='pt').to(device)
|
39 |
output = modelENGROM.generate(
|
40 |
input_ids=input_ids.input_ids,
|