File size: 12,528 Bytes
56f497c
70ebea3
a103fac
9ddff3b
cae0132
56f497c
cae0132
4596a5d
8b76c73
4894c8f
2da2e03
 
e647eeb
590c882
 
282f817
 
a770d4a
4ac6a8d
c00f03b
 
 
0a4ba41
 
 
 
9b5378d
db28f50
a770d4a
cc8d7bd
 
9b5378d
e13fba3
310e819
 
 
 
 
 
 
 
0b61062
0d866f3
326c762
0d866f3
590c882
0d866f3
 
326c762
78a6dc6
cc8d7bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3be98e3
 
cc8d7bd
4ac6a8d
e165775
 
1800b84
4ac6a8d
ca788da
 
 
4ac6a8d
b1a4240
 
 
79ff2d1
b1a4240
 
 
 
 
8010198
 
 
 
9b5378d
4b5e076
9b5378d
e647eeb
8010198
 
 
 
 
 
 
 
9b5378d
70ebea3
4dfd4b1
135432f
481d87b
135432f
481d87b
135432f
 
 
481d87b
135432f
 
481d87b
 
4dfd4b1
481d87b
 
 
 
135432f
481d87b
4596a5d
 
0b61062
ad4a802
56f497c
 
8b76c73
 
 
56f497c
8b76c73
 
 
 
e13fba3
8b76c73
ad4a802
395e0a2
ad4a802
cc8d7bd
0d866f3
 
3be98e3
 
cc8d7bd
50f4453
cc8d7bd
4ac6a8d
b1a4240
4ac6a8d
 
b1a4240
 
 
 
9b5378d
8010198
 
 
 
310e819
6dc437d
d2894fa
 
 
 
cae0132
44aa6cb
d2894fa
 
cae0132
d2894fa
310e819
d2894fa
a770d4a
 
 
 
 
 
 
fc2994c
 
 
a770d4a
 
d2894fa
56f497c
bf6322b
56f497c
 
 
 
 
 
72e8644
2045817
72e8644
60b55c4
16105d3
4fd4915
b98b60d
56f497c
2169b22
 
 
 
56f497c
 
e647eeb
56f497c
 
e647eeb
2169b22
56f497c
7b79ed9
 
fc2994c
6f52ad9
56f497c
16105d3
56f497c
 
8b76c73
e06dabc
16105d3
7175c9b
56f497c
 
e06dabc
56f497c
b98b60d
56f497c
 
 
 
 
28cef2e
16105d3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import gradio as gr
import spaces
import torch
from transformers import T5Tokenizer, T5ForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, AutoModel, pipeline
import languagecodes

favourite_langs = {"German": "de", "Romanian": "ro", "English": "en", "-----": "-----"}
all_langs = languagecodes.iso_languages

# Language options as list, add favourite languages first
options = list(favourite_langs.keys())
options.extend(list(all_langs.keys()))
models = ["Helsinki-NLP",
          "t5-small", "t5-base", "t5-large",
          "google/flan-t5-small", "google/flan-t5-base", "google/flan-t5-large", "google/flan-t5-xl",
          "facebook/nllb-200-distilled-600M",
          "facebook/nllb-200-distilled-1.3B",
          "facebook/mbart-large-50-many-to-many-mmt",
          "bigscience/mt0-small",
          "bigscience/mt0-base",
          "bigscience/mt0-large",
          "bigscience/mt0-xl",
          "bigscience/bloomz-560m",
          "bigscience/bloomz-1b1",
          "bigscience/bloomz-1b7",
          "bigscience/bloomz-3b",
          "utter-project/EuroLLM-1.7B",
          "Unbabel/Tower-Plus-2B",
          "Unbabel/TowerInstruct-7B-v0.2",
          "Unbabel/TowerInstruct-Mistral-7B-v0.2",
          "openGPT-X/Teuken-7B-instruct-commercial-v0.4"
          ]

def model_to_cuda(model):
    # Move the model to GPU if available
    if torch.cuda.is_available():
        model = model.to('cuda')
        print("CUDA is available! Using GPU.")
    else:
        print("CUDA not available! Using CPU.")
    return model

def flan(model_name, sl, tl, input_text):
    tokenizer = T5Tokenizer.from_pretrained(model_name, legacy=False)
    model = T5ForConditionalGeneration.from_pretrained(model_name)
    input_text = f"translate {sl} to {tl}: {input_text}"
    input_ids = tokenizer(input_text, return_tensors="pt").input_ids
    outputs = model.generate(input_ids)
    return tokenizer.decode(outputs[0], skip_special_tokens=True).strip()

def teuken(model_name, sl, tl, input_text):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    # model_name = "openGPT-X/Teuken-7B-instruct-commercial-v0.4"
    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        trust_remote_code=True,
        torch_dtype=torch.bfloat16,
    )
    model = model.to(device).eval()
    tokenizer = AutoTokenizer.from_pretrained(
        model_name,
        use_fast=False,
        trust_remote_code=True,
    )
    translation_prompt = f"Translate the following text from {sl} into {tl}: {input_text}"
    messages = [{"role": "User", "content": translation_prompt}]
    prompt_ids = tokenizer.apply_chat_template(messages, chat_template=sl.upper(), tokenize=True, add_generation_prompt=True, return_tensors="pt")
    prediction = model.generate(
        prompt_ids.to(model.device),
        max_length=512,
        do_sample=True,
        top_k=50,
        top_p=0.95,
        temperature=0.7,
        num_return_sequences=1,
    )
    translation = tokenizer.decode(prediction[0].tolist())
    return translation

def bigscience(model_name, sl, tl, input_text):  
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
    inputs = tokenizer.encode(f"Translate to {tl}: {input_text}.", return_tensors="pt")
    outputs = model.generate(inputs)
    translation = tokenizer.decode(outputs[0])
    translation = translation.replace('<pad> ', '').replace('</s>', '')
    return translation

def bloomz(model_name, sl, tl, input_text):  
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(model_name)
    inputs = tokenizer.encode(f"Translate from {sl} to {tl}: {input_text}. Translation:", return_tensors="pt")
    outputs = model.generate(inputs)
    translation = tokenizer.decode(outputs[0])
    translation = translation.replace('<pad> ', '').replace('</s>', '')
    return translation

def eurollm(model_name, sl, tl, input_text):
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(model_name)  
    prompt = f"{sl}: {input_text} {tl}:"
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(**inputs, max_new_tokens=512)
    output = tokenizer.decode(outputs[0], skip_special_tokens=True) 
    result = output.rsplit(f'{tl}:')[-1].strip()
    return result

def nllb(model_name, sl, tl, input_text):
    tokenizer = AutoTokenizer.from_pretrained(model_name, src_lang=sl)
    model = AutoModelForSeq2SeqLM.from_pretrained(model_name, device_map="auto")
    translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=sl, tgt_lang=tl)
    translated_text = translator(input_text, max_length=512)
    return translated_text[0]['translation_text']

@spaces.GPU
def translate_text(input_text: str, sselected_language: str, tselected_language: str, model_name: str) -> tuple[str, str]:
    """
    Translates the input text from the source language to the target language  using a specified model.

    Parameters:
        input_text (str): The source text to be translated
        sselected_language (str): The source language of the input text
        tselected_language (str): The target language in which the input text is translated
        model_name (str): The selected translation model name

    Returns:
        tuple: 
            translated_text(str): The input text translated to the selected target language
            message_text(str):  A descriptive message summarizing the translation process. Example: "Translated from English to German with Helsinki-NLP."
    
    Example:
        >>> translate_text("Hello world", "English", "German", "Helsinki-NLP")
        ("Hallo Welt", "Translated from English to German with Helsinki-NLP.")
    """
    
    sl = all_langs[sselected_language]
    tl = all_langs[tselected_language]
    message_text = f'Translated from {sselected_language} to {tselected_language} with {model_name}'
    print(message_text)
    if model_name == "Helsinki-NLP":
        try:
            model_name = f"Helsinki-NLP/opus-mt-{sl}-{tl}"
            tokenizer = AutoTokenizer.from_pretrained(model_name)
            model = model_to_cuda(AutoModelForSeq2SeqLM.from_pretrained(model_name))
        except EnvironmentError:
            try:   
                model_name = f"Helsinki-NLP/opus-tatoeba-{sl}-{tl}"
                tokenizer = AutoTokenizer.from_pretrained(model_name)
                model = model_to_cuda(AutoModelForSeq2SeqLM.from_pretrained(model_name))
            except EnvironmentError as error:
                return f"Error finding model: {model_name}! Try other available language combination.", error
    if 'eurollm' in model_name.lower():
        translated_text = eurollm(model_name, sselected_language, tselected_language, input_text)
        return translated_text, message_text

    if 'flan' in model_name.lower():
        translated_text = flan(model_name, sselected_language, tselected_language, input_text)
        return translated_text, message_text
        
    if 'teuken' in model_name.lower():
        translated_text = teuken(model_name, sselected_language, tselected_language, input_text)
        return translated_text, message_text

    if 'mt0' in model_name.lower():
        translated_text = bigscience(model_name, sselected_language, tselected_language, input_text)
        return translated_text, message_text

    if 'bloomz' in model_name.lower():
        translated_text = bloomz(model_name, sselected_language, tselected_language, input_text)
        return translated_text, message_text
        
    if 'nllb' in model_name.lower():
        nnlbsl, nnlbtl = languagecodes.nllb_language_codes[sselected_language], languagecodes.nllb_language_codes[tselected_language]
        translated_text = nllb(model_name, nnlbsl, nnlbtl, input_text)
        return translated_text, message_text
    
    if model_name.startswith('facebook/mbart-large'):
        from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
        model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
        tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
        # translate source to target
        tokenizer.src_lang = languagecodes.mbart_large_languages[sselected_language]
        encoded = tokenizer(input_text, return_tensors="pt")
        generated_tokens = model.generate(
            **encoded,
            forced_bos_token_id=tokenizer.lang_code_to_id[languagecodes.mbart_large_languages[tselected_language]]
        )
        return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0], message_text

    if 'Unbabel' in model_name:   
        pipe = pipeline("text-generation", model=model_name, torch_dtype=torch.bfloat16, device_map="auto")
        messages = [{"role": "user",
                     "content": f"Translate the following text from {sselected_language} into {tselected_language}.\n{sselected_language}: {input_text}.\n{tselected_language}:"}]
        prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False)
        outputs = pipe(prompt, max_new_tokens=256, do_sample=False)
        translated_text = outputs[0]["generated_text"]
        start_marker = "<end_of_turn>"
        if start_marker in translated_text:
            translated_text = translated_text.split(start_marker)[1].strip()
        return translated_text, message_text
    
    if model_name.startswith('t5'):
        tokenizer = T5Tokenizer.from_pretrained(model_name)
        model = T5ForConditionalGeneration.from_pretrained(model_name, device_map="auto")

    if model_name.startswith("Helsinki-NLP"):
        prompt = input_text
    else:
        prompt = f"translate {sselected_language} to {tselected_language}: {input_text}"

    input_ids = tokenizer.encode(prompt, return_tensors="pt")
    output_ids = model.generate(input_ids, max_length=512)
    translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
    
    message_text = f'Translated from {sselected_language} to {tselected_language} with {model_name}.'
    print(f'Translating from {sselected_language} to {tselected_language} with {model_name}:', f'{input_text} =  {translated_text}', sep='\n')
    return translated_text, message_text

# Define a function to swap dropdown values
def swap_languages(src_lang, tgt_lang):
    return tgt_lang, src_lang 

def create_interface():
    with gr.Blocks() as interface:
        gr.Markdown("### Machine Text Translation")

        with gr.Row():
            input_text = gr.Textbox(label="Enter text to translate:", placeholder="Type your text here, maximum 512 tokens")
        
        with gr.Row():
            sselected_language = gr.Dropdown(choices=options, value = options[0], label="Source language", interactive=True)
            tselected_language = gr.Dropdown(choices=options, value = options[1], label="Target language", interactive=True)
            swap_button = gr.Button("Swap Languages", size="md")
            swap_button.click(fn=swap_languages, inputs=[sselected_language, tselected_language], outputs=[sselected_language, tselected_language], api_name=False, show_api=False)

        model_name = gr.Dropdown(choices=models, label=f"Select model. Default is {models[0]}.", value = models[0], interactive=True)
        translate_button = gr.Button("Translate")

        translated_text = gr.Textbox(label="Translated text:", placeholder="Display field for translation", interactive=False, show_copy_button=True)
        message_text = gr.Textbox(label="Messages:", placeholder="Display field for status and error messages", interactive=False,
                                  value=f'Default translation settings: from {sselected_language.value} to {tselected_language.value} with {model_name.value}.')
        allmodels = gr.Textbox(label="Models:", interactive=False, show_copy_button=True, value=', '.join(models))

        translate_button.click(
            fn=translate_text, 
            inputs=[input_text, sselected_language, tselected_language, model_name], 
            outputs=[translated_text, message_text]
        )

    return interface

interface = create_interface()
if __name__ == "__main__":
    interface.launch(mcp_server=True)
    # interface.queue().launch(server_name="0.0.0.0", show_error=True, server_port=7860, mcp_server=True)