File size: 10,458 Bytes
4f9d434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
from transformers import FlaxAutoModelForSeq2SeqLM, AutoTokenizer, AutoModel
import torch
import numpy as np
import random
import json
from fastapi import FastAPI
from fastapi.responses import JSONResponse
from pydantic import BaseModel

# Lade RecipeBERT Modell
bert_model_name = "alexdseo/RecipeBERT"
bert_tokenizer = AutoTokenizer.from_pretrained(bert_model_name)
bert_model = AutoModel.from_pretrained(bert_model_name)
bert_model.eval()

# Lade T5 Rezeptgenerierungsmodell
MODEL_NAME_OR_PATH = "flax-community/t5-recipe-generation"
t5_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME_OR_PATH, use_fast=True)
t5_model = FlaxAutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME_OR_PATH)

# Token Mapping
special_tokens = t5_tokenizer.all_special_tokens
tokens_map = {
    "<sep>": "--",
    "<section>": "\n"
}

# --- Deine Helper-Funktionen (get_embedding, average_embedding, get_cosine_similarity, etc.) ---
# Kopiere alle diese Funktionen von deinem aktuellen app.py hierher.
# Ich kürze sie hier aus Platzgründen, aber sie müssen vollständig eingefügt werden.

def get_embedding(text):
    inputs = bert_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
    with torch.no_grad():
        outputs = bert_model(**inputs)
    attention_mask = inputs['attention_mask']
    token_embeddings = outputs.last_hidden_state
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
    sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
    return (sum_embeddings / sum_mask).squeeze(0)

def average_embedding(embedding_list):
    tensors = torch.stack([emb for _, emb in embedding_list])
    return tensors.mean(dim=0)

def get_cosine_similarity(vec1, vec2):
    if torch.is_tensor(vec1): vec1 = vec1.detach().numpy()
    if torch.is_tensor(vec2): vec2 = vec2.detach().numpy()
    vec1 = vec1.flatten()
    vec2 = vec2.flatten()
    dot_product = np.dot(vec1, vec2)
    norm_a = np.linalg.norm(vec1)
    norm_b = np.linalg.norm(vec2)
    if norm_a == 0 or norm_b == 0: return 0
    return dot_product / (norm_a * norm_b)

def get_combined_scores(query_vector, embedding_list, all_good_embeddings, avg_weight=0.6):
    results = []
    for name, emb in embedding_list:
        avg_similarity = get_cosine_similarity(query_vector, emb)
        individual_similarities = [get_cosine_similarity(good_emb, emb) for _, good_emb in all_good_embeddings]
        avg_individual_similarity = sum(individual_similarities) / len(individual_similarities)
        combined_score = avg_weight * avg_similarity + (1 - avg_weight) * avg_individual_similarity
        results.append((name, emb, combined_score))
    results.sort(key=lambda x: x[2], reverse=True)
    return results

def find_best_ingredients(required_ingredients, available_ingredients, max_ingredients=6, avg_weight=0.6):
    required_ingredients = list(set(required_ingredients))
    available_ingredients = list(set([i for i in available_ingredients if i not in required_ingredients]))
    if not required_ingredients and available_ingredients:
        random_ingredient = random.choice(available_ingredients)
        required_ingredients = [random_ingredient]
        available_ingredients = [i for i in available_ingredients if i != random_ingredient]
    if not required_ingredients or len(required_ingredients) >= max_ingredients:
        return required_ingredients[:max_ingredients]
    if not available_ingredients:
        return required_ingredients
    embed_required = [(e, get_embedding(e)) for e in required_ingredients]
    embed_available = [(e, get_embedding(e)) for e in available_ingredients]
    num_to_add = min(max_ingredients - len(required_ingredients), len(available_ingredients))
    final_ingredients = embed_required.copy()
    for _ in range(num_to_add):
        avg = average_embedding(final_ingredients)
        candidates = get_combined_scores(avg, embed_available, final_ingredients, avg_weight)
        if not candidates: break
        best_name, best_embedding, _ = candidates[0]
        final_ingredients.append((best_name, best_embedding))
        embed_available = [item for item in embed_available if item[0] != best_name]
    return [name for name, _ in final_ingredients]

def skip_special_tokens(text, special_tokens):
    for token in special_tokens: text = text.replace(token, "")
    return text

def target_postprocessing(texts, special_tokens):
    if not isinstance(texts, list): texts = [texts]
    new_texts = []
    for text in texts:
        text = skip_special_tokens(text, special_tokens)
        for k, v in tokens_map.items(): text = text.replace(k, v)
        new_texts.append(text)
    return new_texts

def validate_recipe_ingredients(recipe_ingredients, expected_ingredients, tolerance=0):
    recipe_count = len([ing for ing in recipe_ingredients if ing and ing.strip()])
    expected_count = len(expected_ingredients)
    return abs(recipe_count - expected_count) == tolerance

def generate_recipe_with_t5(ingredients_list, max_retries=5):
    original_ingredients = ingredients_list.copy()
    for attempt in range(max_retries):
        try:
            if attempt > 0:
                current_ingredients = original_ingredients.copy()
                random.shuffle(current_ingredients)
            else:
                current_ingredients = ingredients_list
            ingredients_string = ", ".join(current_ingredients)
            prefix = "items: "
            generation_kwargs = {
                "max_length": 512, "min_length": 64, "do_sample": True,
                "top_k": 60, "top_p": 0.95
            }
            inputs = t5_tokenizer(
                prefix + ingredients_string, max_length=256, padding="max_length",
                truncation=True, return_tensors="jax"
            )
            output_ids = t5_model.generate(
                input_ids=inputs.input_ids, attention_mask=inputs.attention_mask, **generation_kwargs
            )
            generated = output_ids.sequences
            generated_text = target_postprocessing(t5_tokenizer.batch_decode(generated, skip_special_tokens=False), special_tokens)[0]
            recipe = {}
            sections = generated_text.split("\n")
            for section in sections:
                section = section.strip()
                if section.startswith("title:"):
                    recipe["title"] = section.replace("title:", "").strip().capitalize()
                elif section.startswith("ingredients:"):
                    ingredients_text = section.replace("ingredients:", "").strip()
                    recipe["ingredients"] = [item.strip().capitalize() for item in ingredients_text.split("--") if item.strip()]
                elif section.startswith("directions:"):
                    directions_text = section.replace("directions:", "").strip()
                    recipe["directions"] = [step.strip().capitalize() for step in directions_text.split("--") if step.strip()]
            if "title" not in recipe:
                recipe["title"] = f"Rezept mit {', '.join(current_ingredients[:3])}"
            if "ingredients" not in recipe:
                recipe["ingredients"] = current_ingredients
            if "directions" not in recipe:
                recipe["directions"] = ["Keine Anweisungen generiert"]
            if validate_recipe_ingredients(recipe["ingredients"], original_ingredients):
                return recipe
            else:
                if attempt == max_retries - 1: return recipe
        except Exception as e:
            if attempt == max_retries - 1:
                return {
                    "title": f"Rezept mit {original_ingredients[0] if original_ingredients else 'Zutaten'}",
                    "ingredients": original_ingredients,
                    "directions": ["Fehler beim Generieren der Rezeptanweisungen"]
                }
    return {
        "title": f"Rezept mit {original_ingredients[0] if original_ingredients else 'Zutaten'}",
        "ingredients": original_ingredients,
        "directions": ["Fehler beim Generieren der Rezeptanweisungen"]
    }

# Kernlogik, die von der FastAPI-Route aufgerufen wird
def process_recipe_request_logic(required_ingredients, available_ingredients, max_ingredients, max_retries):
    """

    Kernlogik zur Verarbeitung einer Rezeptgenerierungsanfrage.

    """
    if not required_ingredients and not available_ingredients:
        return {"error": "Keine Zutaten angegeben"}
    try:
        optimized_ingredients = find_best_ingredients(
            required_ingredients, available_ingredients, max_ingredients
        )
        recipe = generate_recipe_with_t5(optimized_ingredients, max_retries)
        result = {
            'title': recipe['title'],
            'ingredients': recipe['ingredients'],
            'directions': recipe['directions'],
            'used_ingredients': optimized_ingredients
        }
        return result
    except Exception as e:
        return {"error": f"Fehler bei der Rezeptgenerierung: {str(e)}"}

# --- FastAPI-Implementierung ---
app = FastAPI() # Deine FastAPI-Instanz

class RecipeRequest(BaseModel):
    required_ingredients: list[str] = []
    available_ingredients: list[str] = []
    max_ingredients: int = 7
    max_retries: int = 5
    # Abwärtskompatibilität: Falls 'ingredients' als Top-Level-Feld gesendet wird
    ingredients: list[str] = []

@app.post("/generate_recipe") # Der API-Endpunkt für Flutter
async def generate_recipe_api(request_data: RecipeRequest):
    """

    Standard-REST-API-Endpunkt für die Flutter-App.

    Nimmt direkt JSON-Daten an und gibt direkt JSON zurück.

    """
    final_required_ingredients = request_data.required_ingredients
    if not final_required_ingredients and request_data.ingredients:
        final_required_ingredients = request_data.ingredients

    result_dict = process_recipe_request_logic(
        final_required_ingredients,
        request_data.available_ingredients,
        request_data.max_ingredients,
        request_data.max_retries
    )
    return JSONResponse(content=result_dict)

print("INFO: FastAPI application script finished execution and defined 'app' variable.")