Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,37 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI
|
2 |
from fastapi.responses import JSONResponse
|
3 |
-
from pydantic import BaseModel
|
4 |
|
5 |
-
#
|
6 |
-
|
|
|
|
|
|
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
"""
|
17 |
-
|
18 |
-
|
|
|
19 |
"""
|
20 |
-
|
21 |
-
|
22 |
|
23 |
-
#
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
"""
|
27 |
-
|
28 |
"""
|
29 |
-
|
|
|
|
|
30 |
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import FlaxAutoModelForSeq2SeqLM, AutoTokenizer # AutoModel entfernt
|
2 |
+
import torch # Beibehalten
|
3 |
+
import numpy as np # Beibehalten
|
4 |
+
import random
|
5 |
+
import json
|
6 |
from fastapi import FastAPI
|
7 |
from fastapi.responses import JSONResponse
|
8 |
+
from pydantic import BaseModel
|
9 |
|
10 |
+
# Lade RecipeBERT Modell (KOMPLETT ENTFERNT für diesen Schritt)
|
11 |
+
# bert_model_name = "alexdseo/RecipeBERT"
|
12 |
+
# bert_tokenizer = AutoTokenizer.from_pretrained(bert_model_name)
|
13 |
+
# bert_model = AutoModel.from_pretrained(bert_model_name)
|
14 |
+
# bert_model.eval()
|
15 |
|
16 |
+
# Lade T5 Rezeptgenerierungsmodell
|
17 |
+
MODEL_NAME_OR_PATH = "flax-community/t5-recipe-generation"
|
18 |
+
t5_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME_OR_PATH, use_fast=True)
|
19 |
+
t5_model = FlaxAutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME_OR_PATH)
|
20 |
|
21 |
+
# Token Mapping für die T5 Modell-Ausgabe
|
22 |
+
special_tokens = t5_tokenizer.all_special_token
|
23 |
+
tokens_map = {
|
24 |
+
"<sep>": "--",
|
25 |
+
"<section>": "\n"
|
26 |
+
}
|
27 |
+
|
28 |
+
# --- RecipeBERT-spezifische Funktionen sind entfernt oder vereinfacht ---
|
29 |
+
# get_embedding, average_embedding, get_cosine_similarity, get_combined_scores sind entfernt.
|
30 |
+
|
31 |
+
# find_best_ingredients (modifiziert, um KEINE Embeddings zu nutzen)
|
32 |
+
def find_best_ingredients(required_ingredients, available_ingredients, max_ingredients=6, avg_weight=0.6):
|
33 |
"""
|
34 |
+
Findet die besten Zutaten. Für diesen einfachen Test wird nur
|
35 |
+
die Liste der benötigten Zutaten um zufällig ausgewählte
|
36 |
+
verfügbare Zutaten ergänzt, OHNE Embeddings zu nutzen.
|
37 |
"""
|
38 |
+
required_ingredients = list(set(required_ingredients))
|
39 |
+
available_ingredients = list(set([i for i in available_ingredients if i not in required_ingredients]))
|
40 |
|
41 |
+
# Sonderfall: Wenn keine benötigten Zutaten vorhanden sind, wähle zufällig eine aus den verfügbaren Zutaten
|
42 |
+
if not required_ingredients and available_ingredients:
|
43 |
+
random_ingredient = random.choice(available_ingredients)
|
44 |
+
required_ingredients = [random_ingredient]
|
45 |
+
available_ingredients = [i for i in available_ingredients if i != random_ingredient]
|
46 |
+
|
47 |
+
# Wenn bereits maximale Kapazität erreicht ist
|
48 |
+
if len(required_ingredients) >= max_ingredients:
|
49 |
+
return required_ingredients[:max_ingredients]
|
50 |
+
|
51 |
+
# Wenn keine zusätzlichen Zutaten verfügbar sind
|
52 |
+
if not available_ingredients:
|
53 |
+
return required_ingredients
|
54 |
+
|
55 |
+
# Füge zufällig weitere Zutaten hinzu, bis max_ingredients erreicht ist
|
56 |
+
current_ingredients = required_ingredients.copy()
|
57 |
+
num_to_add = min(max_ingredients - len(current_ingredients), len(available_ingredients))
|
58 |
+
|
59 |
+
# Wähle zufällig aus den verfügbaren Zutaten
|
60 |
+
selected_from_available = random.sample(available_ingredients, num_to_add)
|
61 |
+
current_ingredients.extend(selected_from_available)
|
62 |
+
|
63 |
+
return current_ingredients
|
64 |
+
|
65 |
+
|
66 |
+
def skip_special_tokens(text, special_tokens):
|
67 |
+
"""Entfernt spezielle Tokens aus dem Text"""
|
68 |
+
for token in special_tokens:
|
69 |
+
text = text.replace(token, "")
|
70 |
+
return text
|
71 |
+
|
72 |
+
def target_postprocessing(texts, special_tokens):
|
73 |
+
"""Post-processed generierten Text"""
|
74 |
+
if not isinstance(texts, list):
|
75 |
+
texts = [texts]
|
76 |
+
new_texts = []
|
77 |
+
for text in texts:
|
78 |
+
text = skip_special_tokens(text, special_tokens)
|
79 |
+
for k, v in tokens_map.items():
|
80 |
+
text = text.replace(k, v)
|
81 |
+
new_texts.append(text)
|
82 |
+
return new_texts
|
83 |
+
|
84 |
+
def validate_recipe_ingredients(recipe_ingredients, expected_ingredients, tolerance=0):
|
85 |
"""
|
86 |
+
Validiert, ob das Rezept ungefähr die erwarteten Zutaten enthält.
|
87 |
"""
|
88 |
+
recipe_count = len([ing for ing in recipe_ingredients if ing and ing.strip()])
|
89 |
+
expected_count = len(expected_ingredients)
|
90 |
+
return abs(recipe_count - expected_count) == tolerance
|
91 |
|
92 |
+
def generate_recipe_with_t5(ingredients_list, max_retries=5):
|
93 |
+
"""Generiert ein Rezept mit dem T5 Rezeptgenerierungsmodell mit Validierung."""
|
94 |
+
original_ingredients = ingredients_list.copy()
|
95 |
+
for attempt in range(max_retries):
|
96 |
+
try:
|
97 |
+
if attempt > 0:
|
98 |
+
current_ingredients = original_ingredients.copy()
|
99 |
+
random.shuffle(current_ingredients)
|
100 |
+
else:
|
101 |
+
current_ingredients = ingredients_list
|
102 |
+
ingredients_string = ", ".join(current_ingredients)
|
103 |
+
prefix = "items: "
|
104 |
+
generation_kwargs = {
|
105 |
+
"max_length": 512,
|
106 |
+
"min_length": 64,
|
107 |
+
"do_sample": True,
|
108 |
+
"top_k": 60,
|
109 |
+
"top_p": 0.95
|
110 |
+
}
|
111 |
+
inputs = t5_tokenizer(
|
112 |
+
prefix + ingredients_string,
|
113 |
+
max_length=256,
|
114 |
+
padding="max_length",
|
115 |
+
truncation=True,
|
116 |
+
return_tensors="jax"
|
117 |
+
)
|
118 |
+
output_ids = t5_model.generate(
|
119 |
+
input_ids=inputs.input_ids,
|
120 |
+
attention_mask=inputs.attention_mask,
|
121 |
+
**generation_kwargs
|
122 |
+
)
|
123 |
+
generated = output_ids.sequences
|
124 |
+
generated_text = target_postprocessing(
|
125 |
+
t5_tokenizer.batch_decode(generated, skip_special_tokens=False),
|
126 |
+
special_tokens
|
127 |
+
)[0]
|
128 |
+
recipe = {}
|
129 |
+
sections = generated_text.split("\n")
|
130 |
+
for section in sections:
|
131 |
+
section = section.strip()
|
132 |
+
if section.startswith("title:"):
|
133 |
+
recipe["title"] = section.replace("title:", "").strip().capitalize()
|
134 |
+
elif section.startswith("ingredients:"):
|
135 |
+
ingredients_text = section.replace("ingredients:", "").strip()
|
136 |
+
recipe["ingredients"] = [item.strip().capitalize() for item in ingredients_text.split("--") if item.strip()]
|
137 |
+
elif section.startswith("directions:"):
|
138 |
+
directions_text = section.replace("directions:", "").strip()
|
139 |
+
recipe["directions"] = [step.strip().capitalize() for step in directions_text.split("--") if step.strip()]
|
140 |
+
if "title" not in recipe:
|
141 |
+
recipe["title"] = f"Rezept mit {', '.join(current_ingredients[:3])}"
|
142 |
+
if "ingredients" not in recipe:
|
143 |
+
recipe["ingredients"] = current_ingredients
|
144 |
+
if "directions" not in recipe:
|
145 |
+
recipe["directions"] = ["Keine Anweisungen generiert"]
|
146 |
+
if validate_recipe_ingredients(recipe["ingredients"], original_ingredients):
|
147 |
+
return recipe
|
148 |
+
else:
|
149 |
+
if attempt == max_retries - 1:
|
150 |
+
return recipe
|
151 |
+
except Exception as e:
|
152 |
+
if attempt == max_retries - 1:
|
153 |
+
return {
|
154 |
+
"title": f"Rezept mit {original_ingredients[0] if original_ingredients else 'Zutaten'}",
|
155 |
+
"ingredients": original_ingredients,
|
156 |
+
"directions": ["Fehler beim Generieren der Rezeptanweisungen"]
|
157 |
+
}
|
158 |
+
return {
|
159 |
+
"title": f"Rezept mit {original_ingredients[0] if original_ingredients else 'Zutaten'}",
|
160 |
+
"ingredients": original_ingredients,
|
161 |
+
"directions": ["Fehler beim Generieren der Rezeptanweisungen"]
|
162 |
+
}
|
163 |
|
164 |
+
def process_recipe_request_logic(required_ingredients, available_ingredients, max_ingredients, max_retries):
|
165 |
+
"""
|
166 |
+
Kernlogik zur Verarbeitung einer Rezeptgenerierungsanfrage.
|
167 |
+
"""
|
168 |
+
if not required_ingredients and not available_ingredients:
|
169 |
+
return {"error": "Keine Zutaten angegeben"}
|
170 |
+
try:
|
171 |
+
# Hier wird die vereinfachte find_best_ingredients verwendet, die KEINE Embeddings nutzt.
|
172 |
+
optimized_ingredients = find_best_ingredients(
|
173 |
+
required_ingredients, available_ingredients, max_ingredients
|
174 |
+
)
|
175 |
+
recipe = generate_recipe_with_t5(optimized_ingredients, max_retries)
|
176 |
+
result = {
|
177 |
+
'title': recipe['title'],
|
178 |
+
'ingredients': recipe['ingredients'],
|
179 |
+
'directions': recipe['directions'],
|
180 |
+
'used_ingredients': optimized_ingredients
|
181 |
+
}
|
182 |
+
return result
|
183 |
+
except Exception as e:
|
184 |
+
return {"error": f"Fehler bei der Rezeptgenerierung: {str(e)}"}
|
185 |
+
|
186 |
+
# --- FastAPI-Implementierung ---
|
187 |
+
app = FastAPI(title="AI Recipe Generator API") # Deine FastAPI-Instanz
|
188 |
+
|
189 |
+
class RecipeRequest(BaseModel):
|
190 |
+
required_ingredients: list[str] = []
|
191 |
+
available_ingredients: list[str] = []
|
192 |
+
max_ingredients: int = 7
|
193 |
+
max_retries: int = 5
|
194 |
+
ingredients: list[str] = [] # Für Abwärtskompatibilität
|
195 |
+
|
196 |
+
@app.post("/generate_recipe") # Der API-Endpunkt für Flutter
|
197 |
+
async def generate_recipe_api(request_data: RecipeRequest):
|
198 |
+
"""
|
199 |
+
Standard-REST-API-Endpunkt für die Flutter-App.
|
200 |
+
Nimmt direkt JSON-Daten an und gibt direkt JSON zurück.
|
201 |
+
"""
|
202 |
+
final_required_ingredients = request_data.required_ingredients
|
203 |
+
if not final_required_ingredients and request_data.ingredients:
|
204 |
+
final_required_ingredients = request_data.ingredients
|
205 |
+
|
206 |
+
result_dict = process_recipe_request_logic(
|
207 |
+
final_required_ingredients,
|
208 |
+
request_data.available_ingredients,
|
209 |
+
request_data.max_ingredients,
|
210 |
+
request_data.max_retries
|
211 |
+
)
|
212 |
+
return JSONResponse(content=result_dict)
|
213 |
+
|
214 |
+
# Optionaler Root-Endpunkt für Health-Checks
|
215 |
+
@app.get("/")
|
216 |
+
async def read_root():
|
217 |
+
return {"message": "AI Recipe Generator API is running (T5 only)!"} # Angepasste Nachricht
|
218 |
+
|
219 |
+
print("INFO: FastAPI application script finished execution and defined 'app' variable.")
|