Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,7 @@ import json
|
|
6 |
from fastapi import FastAPI
|
7 |
from fastapi.responses import JSONResponse
|
8 |
from pydantic import BaseModel
|
|
|
9 |
|
10 |
# Lade RecipeBERT Modell (für semantische Zutat-Kombination)
|
11 |
bert_model_name = "alexdseo/RecipeBERT"
|
@@ -40,7 +41,6 @@ def get_embedding(text):
|
|
40 |
|
41 |
def average_embedding(embedding_list):
|
42 |
"""Berechnet den Durchschnitt einer Liste von Embeddings"""
|
43 |
-
# Sicherstellen, dass embedding_list Tupel von (Name, Embedding) enthält
|
44 |
tensors = torch.stack([emb for _, emb in embedding_list])
|
45 |
return tensors.mean(dim=0)
|
46 |
|
@@ -59,60 +59,121 @@ def get_cosine_similarity(vec1, vec2):
|
|
59 |
return 0
|
60 |
return dot_product / (norm_a * norm_b)
|
61 |
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
results = []
|
65 |
-
for name, emb in
|
66 |
avg_similarity = get_cosine_similarity(query_vector, emb)
|
67 |
individual_similarities = [get_cosine_similarity(good_emb, emb)
|
68 |
for _, good_emb in all_good_embeddings]
|
69 |
avg_individual_similarity = sum(individual_similarities) / len(individual_similarities) if individual_similarities else 0
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
results.sort(key=lambda x: x[2], reverse=True)
|
73 |
return results
|
74 |
|
75 |
-
|
76 |
-
def find_best_ingredients(required_ingredients, available_ingredients, max_ingredients=6, avg_weight=0.6):
|
77 |
"""
|
78 |
-
Findet die besten Zutaten basierend auf RecipeBERT Embeddings.
|
|
|
|
|
79 |
"""
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
for _ in range(num_to_add):
|
103 |
-
avg = average_embedding(
|
104 |
-
|
|
|
105 |
|
106 |
if not candidates:
|
107 |
break
|
108 |
|
109 |
-
best_name, best_embedding, _ = candidates[0]
|
110 |
-
|
111 |
-
|
|
|
|
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
116 |
|
117 |
def skip_special_tokens(text, special_tokens):
|
118 |
"""Entfernt spezielle Tokens aus dem Text"""
|
@@ -219,17 +280,18 @@ def generate_recipe_with_t5(ingredients_list, max_retries=5):
|
|
219 |
"directions": ["Fehler beim Generieren der Rezeptanweisungen"]
|
220 |
}
|
221 |
|
222 |
-
def process_recipe_request_logic(required_ingredients,
|
223 |
"""
|
224 |
Kernlogik zur Verarbeitung einer Rezeptgenerierungsanfrage.
|
|
|
225 |
"""
|
226 |
-
if not required_ingredients and not
|
227 |
return {"error": "Keine Zutaten angegeben"}
|
228 |
try:
|
|
|
229 |
optimized_ingredients = find_best_ingredients(
|
230 |
-
required_ingredients,
|
231 |
)
|
232 |
-
# KORRIGIERT: Aufruf der echten T5-Generierungsfunktion
|
233 |
recipe = generate_recipe_with_t5(optimized_ingredients, max_retries)
|
234 |
result = {
|
235 |
'title': recipe['title'],
|
@@ -239,34 +301,42 @@ def process_recipe_request_logic(required_ingredients, available_ingredients, ma
|
|
239 |
}
|
240 |
return result
|
241 |
except Exception as e:
|
|
|
|
|
242 |
return {"error": f"Fehler bei der Rezeptgenerierung: {str(e)}"}
|
243 |
|
244 |
# --- FastAPI-Implementierung ---
|
245 |
-
app = FastAPI(title="AI Recipe Generator API")
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
|
247 |
class RecipeRequest(BaseModel):
|
248 |
required_ingredients: list[str] = []
|
249 |
-
|
|
|
250 |
max_ingredients: int = 7
|
251 |
max_retries: int = 5
|
252 |
-
# Optional: Für Abwärtskompatibilität
|
253 |
ingredients: list[str] = []
|
254 |
|
255 |
-
@app.post("/generate_recipe")
|
256 |
async def generate_recipe_api(request_data: RecipeRequest):
|
257 |
"""
|
258 |
Standard-REST-API-Endpunkt für die Flutter-App.
|
259 |
Nimmt direkt JSON-Daten an und gibt direkt JSON zurück.
|
260 |
"""
|
261 |
-
# Wenn required_ingredients leer ist, aber ingredients vorhanden sind,
|
262 |
-
# verwende ingredients für Abwärtskompatibilität.
|
263 |
final_required_ingredients = request_data.required_ingredients
|
264 |
if not final_required_ingredients and request_data.ingredients:
|
265 |
final_required_ingredients = request_data.ingredients
|
266 |
|
|
|
267 |
result_dict = process_recipe_request_logic(
|
268 |
final_required_ingredients,
|
269 |
-
request_data.available_ingredients,
|
270 |
request_data.max_ingredients,
|
271 |
request_data.max_retries
|
272 |
)
|
@@ -274,9 +344,6 @@ async def generate_recipe_api(request_data: RecipeRequest):
|
|
274 |
|
275 |
@app.get("/")
|
276 |
async def read_root():
|
277 |
-
return {"message": "AI Recipe Generator API is running (FastAPI only)!"}
|
278 |
-
|
279 |
-
# Hier gibt es KEINEN Gradio-Mount oder Gradio-Launch-Befehl
|
280 |
-
# Das `app` Objekt ist eine reine FastAPI-Instanz
|
281 |
-
print("INFO: Pure FastAPI application script finished execution and defined 'app' variable.")
|
282 |
|
|
|
|
6 |
from fastapi import FastAPI
|
7 |
from fastapi.responses import JSONResponse
|
8 |
from pydantic import BaseModel
|
9 |
+
from datetime import datetime, timedelta # Importieren für Datumsberechnungen
|
10 |
|
11 |
# Lade RecipeBERT Modell (für semantische Zutat-Kombination)
|
12 |
bert_model_name = "alexdseo/RecipeBERT"
|
|
|
41 |
|
42 |
def average_embedding(embedding_list):
|
43 |
"""Berechnet den Durchschnitt einer Liste von Embeddings"""
|
|
|
44 |
tensors = torch.stack([emb for _, emb in embedding_list])
|
45 |
return tensors.mean(dim=0)
|
46 |
|
|
|
59 |
return 0
|
60 |
return dot_product / (norm_a * norm_b)
|
61 |
|
62 |
+
# NEUE FUNKTION: Berechnet den Altersbonus für eine Zutat
|
63 |
+
def calculate_age_bonus(date_added_str: str, category: str) -> float:
|
64 |
+
"""
|
65 |
+
Berechnet einen prozentualen Bonus basierend auf dem Alter der Zutat.
|
66 |
+
- Standard: 0.5% pro Tag, max. 10%.
|
67 |
+
- Gemüse: 2.0% pro Tag, max. 10%.
|
68 |
+
"""
|
69 |
+
try:
|
70 |
+
date_added = datetime.fromisoformat(date_added_str.replace('Z', '+00:00')) # Handle 'Z' for UTC
|
71 |
+
except ValueError:
|
72 |
+
print(f"Warning: Could not parse date_added_str: {date_added_str}. Returning 0 bonus.")
|
73 |
+
return 0.0
|
74 |
+
|
75 |
+
today = datetime.now()
|
76 |
+
days_since_added = (today - date_added).days
|
77 |
+
|
78 |
+
if days_since_added < 0: # Zutat aus der Zukunft? Ungültig.
|
79 |
+
return 0.0
|
80 |
+
|
81 |
+
if category and category.lower() == "vegetables":
|
82 |
+
daily_bonus = 0.02 # 2% pro Tag für Gemüse
|
83 |
+
else:
|
84 |
+
daily_bonus = 0.005 # 0.5% pro Tag für andere
|
85 |
+
|
86 |
+
bonus = days_since_added * daily_bonus
|
87 |
+
return min(bonus, 0.10) # Max 10% (0.10)
|
88 |
+
|
89 |
+
def get_combined_scores(query_vector, embedding_list_with_details, all_good_embeddings, avg_weight=0.6):
|
90 |
+
"""
|
91 |
+
Berechnet einen kombinierten Score unter Berücksichtigung der Ähnlichkeit zum Durchschnitt und zu einzelnen Zutaten.
|
92 |
+
Jetzt inklusive Altersbonus.
|
93 |
+
embedding_list_with_details: Liste von Tupeln (Name, Embedding, DateAddedStr, Category)
|
94 |
+
"""
|
95 |
results = []
|
96 |
+
for name, emb, date_added_str, category in embedding_list_with_details:
|
97 |
avg_similarity = get_cosine_similarity(query_vector, emb)
|
98 |
individual_similarities = [get_cosine_similarity(good_emb, emb)
|
99 |
for _, good_emb in all_good_embeddings]
|
100 |
avg_individual_similarity = sum(individual_similarities) / len(individual_similarities) if individual_similarities else 0
|
101 |
+
|
102 |
+
base_combined_score = avg_weight * avg_similarity + (1 - avg_weight) * avg_individual_similarity
|
103 |
+
|
104 |
+
# NEU: Altersbonus hinzufügen
|
105 |
+
age_bonus = calculate_age_bonus(date_added_str, category)
|
106 |
+
final_combined_score = base_combined_score + age_bonus
|
107 |
+
|
108 |
+
results.append((name, emb, final_combined_score, date_added_str, category)) # Behalte Details für Debug oder zukünftige Nutzung
|
109 |
results.sort(key=lambda x: x[2], reverse=True)
|
110 |
return results
|
111 |
|
112 |
+
def find_best_ingredients(required_ingredients_names, available_ingredients_details, max_ingredients=6, avg_weight=0.6):
|
|
|
113 |
"""
|
114 |
+
Findet die besten Zutaten basierend auf RecipeBERT Embeddings, jetzt mit Alters- und Kategorie-Bonus.
|
115 |
+
required_ingredients_names: Liste von Strings (nur Namen)
|
116 |
+
available_ingredients_details: Liste von Dicts (Name, DateAdded, Category)
|
117 |
"""
|
118 |
+
required_ingredients_names = list(set(required_ingredients_names))
|
119 |
+
|
120 |
+
# Filtern der verfügbaren Zutaten, um sicherzustellen, dass keine Pflichtzutaten dabei sind
|
121 |
+
# und gleichzeitig die Details beibehalten
|
122 |
+
available_ingredients_filtered_details = [
|
123 |
+
item for item in available_ingredients_details
|
124 |
+
if item['name'] not in required_ingredients_names
|
125 |
+
]
|
126 |
+
|
127 |
+
# Wenn keine Pflichtzutaten vorhanden sind, aber verfügbare, wähle eine zufällig als Pflichtzutat
|
128 |
+
if not required_ingredients_names and available_ingredients_filtered_details:
|
129 |
+
random_item = random.choice(available_ingredients_filtered_details)
|
130 |
+
required_ingredients_names = [random_item['name']]
|
131 |
+
# Entferne die zufällig gewählte Zutat aus den verfügbaren Details
|
132 |
+
available_ingredients_filtered_details = [
|
133 |
+
item for item in available_ingredients_filtered_details
|
134 |
+
if item['name'] != random_item['name']
|
135 |
+
]
|
136 |
+
print(f"No required ingredients provided. Randomly selected: {required_ingredients_names[0]}")
|
137 |
+
|
138 |
+
if not required_ingredients_names or len(required_ingredients_names) >= max_ingredients:
|
139 |
+
return required_ingredients_names[:max_ingredients]
|
140 |
+
|
141 |
+
if not available_ingredients_filtered_details:
|
142 |
+
return required_ingredients_names
|
143 |
+
|
144 |
+
# Erstelle Embeddings für Pflichtzutaten (nur Name und Embedding)
|
145 |
+
embed_required = [(name, get_embedding(name)) for name in required_ingredients_names]
|
146 |
+
|
147 |
+
# Erstelle Embeddings für verfügbare Zutaten, inklusive ihrer Details
|
148 |
+
embed_available_with_details = [
|
149 |
+
(item['name'], get_embedding(item['name']), item['dateAdded'], item['category'])
|
150 |
+
for item in available_ingredients_filtered_details
|
151 |
+
]
|
152 |
+
|
153 |
+
num_to_add = min(max_ingredients - len(required_ingredients_names), len(embed_available_with_details))
|
154 |
+
|
155 |
+
final_ingredients_with_embeddings = embed_required.copy() # (Name, Embedding)
|
156 |
+
final_ingredients_names = required_ingredients_names.copy() # Nur Namen zum Tracken der ausgewählten
|
157 |
+
|
158 |
for _ in range(num_to_add):
|
159 |
+
avg = average_embedding(final_ingredients_with_embeddings)
|
160 |
+
# Sende die Liste mit den detaillierten Zutaten an get_combined_scores
|
161 |
+
candidates = get_combined_scores(avg, embed_available_with_details, final_ingredients_with_embeddings, avg_weight)
|
162 |
|
163 |
if not candidates:
|
164 |
break
|
165 |
|
166 |
+
best_name, best_embedding, best_score, _, _ = candidates[0] # Holen Sie den besten Kandidaten
|
167 |
+
|
168 |
+
# Füge nur den Namen und das Embedding zum final_ingredients_with_embeddings hinzu
|
169 |
+
final_ingredients_with_embeddings.append((best_name, best_embedding))
|
170 |
+
final_ingredients_names.append(best_name)
|
171 |
|
172 |
+
# Entferne den besten Kandidaten aus den verfügbaren
|
173 |
+
embed_available_with_details = [item for item in embed_available_with_details if item[0] != best_name]
|
174 |
+
|
175 |
+
return final_ingredients_names
|
176 |
+
|
177 |
|
178 |
def skip_special_tokens(text, special_tokens):
|
179 |
"""Entfernt spezielle Tokens aus dem Text"""
|
|
|
280 |
"directions": ["Fehler beim Generieren der Rezeptanweisungen"]
|
281 |
}
|
282 |
|
283 |
+
def process_recipe_request_logic(required_ingredients, available_ingredients_details, max_ingredients, max_retries):
|
284 |
"""
|
285 |
Kernlogik zur Verarbeitung einer Rezeptgenerierungsanfrage.
|
286 |
+
available_ingredients_details: Liste von Dicts (Name, DateAdded, Category)
|
287 |
"""
|
288 |
+
if not required_ingredients and not available_ingredients_details:
|
289 |
return {"error": "Keine Zutaten angegeben"}
|
290 |
try:
|
291 |
+
# Die find_best_ingredients Funktion erwartet jetzt die detaillierte Liste
|
292 |
optimized_ingredients = find_best_ingredients(
|
293 |
+
required_ingredients, available_ingredients_details, max_ingredients
|
294 |
)
|
|
|
295 |
recipe = generate_recipe_with_t5(optimized_ingredients, max_retries)
|
296 |
result = {
|
297 |
'title': recipe['title'],
|
|
|
301 |
}
|
302 |
return result
|
303 |
except Exception as e:
|
304 |
+
import traceback
|
305 |
+
traceback.print_exc() # Dies hilft bei der Fehlersuche im Log
|
306 |
return {"error": f"Fehler bei der Rezeptgenerierung: {str(e)}"}
|
307 |
|
308 |
# --- FastAPI-Implementierung ---
|
309 |
+
app = FastAPI(title="AI Recipe Generator API")
|
310 |
+
|
311 |
+
# NEU: Model für die empfangene Zutat mit Details
|
312 |
+
class IngredientDetail(BaseModel):
|
313 |
+
name: str
|
314 |
+
dateAdded: str # Muss ein String sein, da wir ihn als ISO 8601 empfangen
|
315 |
+
category: str
|
316 |
|
317 |
class RecipeRequest(BaseModel):
|
318 |
required_ingredients: list[str] = []
|
319 |
+
# NEU: available_ingredients ist jetzt eine Liste von IngredientDetail-Objekten
|
320 |
+
available_ingredients: list[IngredientDetail] = []
|
321 |
max_ingredients: int = 7
|
322 |
max_retries: int = 5
|
323 |
+
# Optional: Für Abwärtskompatibilität (kann entfernt werden, wenn nicht mehr benötigt)
|
324 |
ingredients: list[str] = []
|
325 |
|
326 |
+
@app.post("/generate_recipe")
|
327 |
async def generate_recipe_api(request_data: RecipeRequest):
|
328 |
"""
|
329 |
Standard-REST-API-Endpunkt für die Flutter-App.
|
330 |
Nimmt direkt JSON-Daten an und gibt direkt JSON zurück.
|
331 |
"""
|
|
|
|
|
332 |
final_required_ingredients = request_data.required_ingredients
|
333 |
if not final_required_ingredients and request_data.ingredients:
|
334 |
final_required_ingredients = request_data.ingredients
|
335 |
|
336 |
+
# Jetzt die detaillierten available_ingredients an die Logik übergeben
|
337 |
result_dict = process_recipe_request_logic(
|
338 |
final_required_ingredients,
|
339 |
+
request_data.available_ingredients, # Hier ist die Liste der IngredientDetail-Objekte
|
340 |
request_data.max_ingredients,
|
341 |
request_data.max_retries
|
342 |
)
|
|
|
344 |
|
345 |
@app.get("/")
|
346 |
async def read_root():
|
347 |
+
return {"message": "AI Recipe Generator API is running (FastAPI only)!"}
|
|
|
|
|
|
|
|
|
348 |
|
349 |
+
print("INFO: Pure FastAPI application script finished execution and defined 'app' variable.")
|