Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -11,6 +11,8 @@ from sklearn.neighbors import NearestNeighbors
|
|
11 |
def download_pdf(url, output_path):
|
12 |
urllib.request.urlretrieve(url, output_path)
|
13 |
|
|
|
|
|
14 |
|
15 |
def preprocess(text):
|
16 |
text = text.replace('\n', ' ')
|
@@ -89,74 +91,56 @@ class SemanticSearch:
|
|
89 |
return embeddings
|
90 |
|
91 |
|
92 |
-
|
93 |
-
def load_recommender(path, start_page=1):
|
94 |
global recommender
|
95 |
-
|
96 |
-
|
|
|
97 |
recommender.fit(chunks)
|
98 |
-
return '
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
def question_answer(
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
if url.strip() != '':
|
144 |
-
glob_url = url
|
145 |
-
download_pdf(glob_url, 'corpus.pdf')
|
146 |
-
load_recommender('corpus.pdf')
|
147 |
-
|
148 |
-
else:
|
149 |
-
old_file_name = file.name
|
150 |
-
file_name = file.name
|
151 |
-
file_name = file_name[:-12] + file_name[-4:]
|
152 |
-
os.rename(old_file_name, file_name)
|
153 |
-
load_recommender(file_name)
|
154 |
-
|
155 |
-
if question.strip() == '':
|
156 |
-
return '[ERROR]: Question field is empty'
|
157 |
-
|
158 |
-
return generate_answer(question,openAI_key)
|
159 |
-
|
160 |
|
161 |
recommender = SemanticSearch()
|
162 |
|
@@ -165,24 +149,22 @@ description = """ PDF GPT allows you to chat with your PDF file using Universal
|
|
165 |
|
166 |
with gr.Blocks() as demo:
|
167 |
|
168 |
-
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
-
with gr.Row():
|
172 |
-
|
173 |
-
with gr.Group():
|
174 |
-
gr.Markdown(f'<p style="text-align:center">Get your Open AI API key <a href="https://platform.openai.com/account/api-keys">here</a></p>')
|
175 |
-
openAI_key=gr.Textbox(label='Enter your OpenAI API key here')
|
176 |
-
url = gr.Textbox(label='Enter PDF URL here')
|
177 |
-
gr.Markdown("<center><h4>OR<h4></center>")
|
178 |
-
file = gr.File(label='Upload your PDF/ Research Paper / Book here', file_types=['.pdf'])
|
179 |
-
question = gr.Textbox(label='Enter your question here')
|
180 |
-
btn = gr.Button(value='Submit')
|
181 |
-
btn.style(full_width=True)
|
182 |
-
|
183 |
-
with gr.Group():
|
184 |
-
answer = gr.Textbox(label='The answer to your question is :')
|
185 |
-
|
186 |
-
btn.click(question_answer, inputs=[url, file, question,openAI_key], outputs=[answer])
|
187 |
-
#openai.api_key = os.getenv('Your_Key_Here')
|
188 |
demo.launch()
|
|
|
11 |
def download_pdf(url, output_path):
|
12 |
urllib.request.urlretrieve(url, output_path)
|
13 |
|
14 |
+
PDF_URL = 'https://www.westlondon.nhs.uk/download_file/view/1459/615'
|
15 |
+
OPENAI_API_KEY = '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'
|
16 |
|
17 |
def preprocess(text):
|
18 |
text = text.replace('\n', ' ')
|
|
|
91 |
return embeddings
|
92 |
|
93 |
|
94 |
+
def load_recommender():
|
|
|
95 |
global recommender
|
96 |
+
download_pdf(PDF_URL, 'corpus.pdf')
|
97 |
+
texts = pdf_to_text('corpus.pdf', start_page=1)
|
98 |
+
chunks = text_to_chunks(texts, start_page=1)
|
99 |
recommender.fit(chunks)
|
100 |
+
return '
|
101 |
+
def generate_text(prompt, engine="text-davinci-003"):
|
102 |
+
openai.api_key = OPENAI_API_KEY
|
103 |
+
completions = openai.Completion.create(
|
104 |
+
engine=engine,
|
105 |
+
prompt=prompt,
|
106 |
+
max_tokens=512,
|
107 |
+
n=1,
|
108 |
+
stop=None,
|
109 |
+
temperature=0.7,
|
110 |
+
)
|
111 |
+
message = completions.choices[0].text
|
112 |
+
return message
|
113 |
+
|
114 |
+
def generate_answer(question):
|
115 |
+
topn_chunks = recommender(question)
|
116 |
+
prompt = ""
|
117 |
+
prompt += 'search results:\n\n'
|
118 |
+
for c in topn_chunks:
|
119 |
+
prompt += c + '\n\n'
|
120 |
+
|
121 |
+
swift
|
122 |
+
|
123 |
+
prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. "\
|
124 |
+
"Cite each reference using [ Page Number] notation (every result has this number at the beginning). "\
|
125 |
+
"Citation should be done at the end of each sentence. If the search results mention multiple subjects "\
|
126 |
+
"with the same name, create separate answers for each. Only include information found in the results and "\
|
127 |
+
"don't add any additional information. Make sure the answer is correct and don't output false content. "\
|
128 |
+
"If the text does not relate to the query, simply state 'Text Not Found in PDF'. Ignore outlier "\
|
129 |
+
"search results which has nothing to do with the question. Only answer what is asked. The "\
|
130 |
+
"answer should be short and concise. Answer step-by-step. \n\nQuery: {question}\nAnswer: "
|
131 |
+
|
132 |
+
prompt += f"Query: {question}\nAnswer:"
|
133 |
+
answer = generate_text(prompt, "text-davinci-003")
|
134 |
+
return answer
|
135 |
+
|
136 |
+
def question_answer(question):
|
137 |
+
if OPENAI_API_KEY.strip()=='':
|
138 |
+
return '[ERROR]: Please enter your OpenAI API Key. Get your key here : https://platform.openai.com/account/api-keys'
|
139 |
+
load_recommender()
|
140 |
+
if question.strip() == '':
|
141 |
+
return '[ERROR]: Question field is empty'
|
142 |
+
|
143 |
+
return generate_answer(question)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
recommender = SemanticSearch()
|
146 |
|
|
|
149 |
|
150 |
with gr.Blocks() as demo:
|
151 |
|
152 |
+
scss
|
153 |
+
|
154 |
+
gr.Markdown(f'<center><h1>{title}</h1></center>')
|
155 |
+
gr.Markdown(description)
|
156 |
+
|
157 |
+
with gr.Row():
|
158 |
+
|
159 |
+
with gr.Group():
|
160 |
+
openAI_key=gr.Textbox(label='OpenAI API key', default=OPENAI_API_KEY)
|
161 |
+
question = gr.Textbox(label='Enter your question here')
|
162 |
+
btn = gr.Button(value='Submit')
|
163 |
+
btn.style(full_width=True)
|
164 |
+
|
165 |
+
with gr.Group():
|
166 |
+
answer = gr.Textbox(label='The answer to your question is :')
|
167 |
+
|
168 |
+
btn.click(question_answer, inputs=[question], outputs=[answer])
|
169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
demo.launch()
|