Spaces:
Runtime error
Runtime error
Todd Deshane
commited on
Commit
·
fa3d6a7
1
Parent(s):
e9fd72e
app
Browse files
app.py
ADDED
|
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import chainlit as cl
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import io
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import base64
|
| 6 |
+
from io import BytesIO
|
| 7 |
+
from pandasai import SmartDataframe
|
| 8 |
+
import pandas as pd
|
| 9 |
+
from pandasai.llm import OpenAI
|
| 10 |
+
from io import StringIO
|
| 11 |
+
import matplotlib.pyplot as plt
|
| 12 |
+
import csv
|
| 13 |
+
from collections import defaultdict
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def find_most_valuable_feature(csv_file):
|
| 17 |
+
print("find_most_valuable_feature")
|
| 18 |
+
print(csv_file)
|
| 19 |
+
|
| 20 |
+
openai.api_key = os.environ["OPENAI_API_KEY"]
|
| 21 |
+
smart_llm = OpenAI()
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
# Initialize a defaultdict to store column data
|
| 27 |
+
columns = defaultdict(list)
|
| 28 |
+
|
| 29 |
+
# Read the CSV file and populate the defaultdict
|
| 30 |
+
with open("upload.csv") as f:
|
| 31 |
+
reader = csv.reader(f)
|
| 32 |
+
headers = next(reader)
|
| 33 |
+
|
| 34 |
+
for row in reader:
|
| 35 |
+
for header, value in zip(headers, row):
|
| 36 |
+
columns[header].append(value)
|
| 37 |
+
|
| 38 |
+
# Manually create a DataFrame from the defaultdict
|
| 39 |
+
smart_df = pd.DataFrame({
|
| 40 |
+
"ID": columns["ID"],
|
| 41 |
+
"Date and Time": columns["Date and Time"],
|
| 42 |
+
"Business Unit": columns["Business Unit"],
|
| 43 |
+
"Usage Change": columns["Usage Change"],
|
| 44 |
+
"Wolftech Improvement": columns["Wolftech Improvement"],
|
| 45 |
+
"Likelihood to Recommend": columns["Likelihood to Recommend"],
|
| 46 |
+
"Effective Training": columns["Effective Training"],
|
| 47 |
+
"Most Valuable Feature": columns["Most Valuable Feature"]
|
| 48 |
+
})
|
| 49 |
+
|
| 50 |
+
smart_df = SmartDataframe(smart_df, config={"llm": smart_llm})
|
| 51 |
+
out = smart_df.chat('Summarize the top three "Most Valuable Feature" for people where Usage Changed was Increased?')
|
| 52 |
+
|
| 53 |
+
print(out)
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
df = out
|
| 57 |
+
|
| 58 |
+
# Plotting
|
| 59 |
+
plt.figure(figsize=(10, 6))
|
| 60 |
+
plt.bar(df["Most Valuable Feature"], df["Count"], color='blue')
|
| 61 |
+
plt.xlabel('Most Valuable Feature')
|
| 62 |
+
plt.ylabel('Count')
|
| 63 |
+
plt.title('Count of Most Valuable Features')
|
| 64 |
+
plt.xticks(rotation=45, ha="right") # Rotate labels for better readability
|
| 65 |
+
plt.tight_layout() # Adjust layout for better fit
|
| 66 |
+
|
| 67 |
+
# Save the plot to a BytesIO object
|
| 68 |
+
image_buffer = BytesIO()
|
| 69 |
+
plt.savefig(image_buffer, format='png')
|
| 70 |
+
image_buffer.seek(0)
|
| 71 |
+
|
| 72 |
+
return image_buffer
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def process_and_analyze_data(csv_file):
|
| 79 |
+
# Read CSV file
|
| 80 |
+
csv_data = pd.read_csv(csv_file)
|
| 81 |
+
|
| 82 |
+
# Logging to check data loading
|
| 83 |
+
print(f"CSV Data Loaded: {csv_data.head()}")
|
| 84 |
+
|
| 85 |
+
# Count of responses in each category of 'Business Unit'
|
| 86 |
+
business_unit_counts = csv_data['Business Unit'].value_counts()
|
| 87 |
+
|
| 88 |
+
# Plotting the count of responses in each 'Business Unit' category
|
| 89 |
+
plt.figure(figsize=(10, 6))
|
| 90 |
+
business_unit_counts.plot(kind='bar')
|
| 91 |
+
plt.title('Count of Responses by Business Unit')
|
| 92 |
+
plt.xlabel('Business Unit')
|
| 93 |
+
plt.ylabel('Count')
|
| 94 |
+
plt.xticks(rotation=45)
|
| 95 |
+
plt.tight_layout()
|
| 96 |
+
|
| 97 |
+
# Save the plot to a BytesIO object
|
| 98 |
+
image_buffer = BytesIO()
|
| 99 |
+
plt.savefig(image_buffer, format='png')
|
| 100 |
+
image_buffer.seek(0)
|
| 101 |
+
|
| 102 |
+
return image_buffer
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
# Function to handle message events
|
| 106 |
+
|
| 107 |
+
@cl.on_message
|
| 108 |
+
async def handle_message(message: cl.Message):
|
| 109 |
+
# Retrieve the CSV file from the message
|
| 110 |
+
csv_file = next(
|
| 111 |
+
(
|
| 112 |
+
io.BytesIO(file.content)
|
| 113 |
+
for file in message.elements or []
|
| 114 |
+
if file.mime and "csv" in file.mime
|
| 115 |
+
),
|
| 116 |
+
None,
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
# Logging to check file retrieval
|
| 120 |
+
print(f"CSV File: {csv_file}")
|
| 121 |
+
|
| 122 |
+
if csv_file:
|
| 123 |
+
try:
|
| 124 |
+
|
| 125 |
+
image_buffer = find_most_valuable_feature(csv_file)
|
| 126 |
+
|
| 127 |
+
# Get bytes data from BytesIO object and send the image data
|
| 128 |
+
image_data = image_buffer.getvalue()
|
| 129 |
+
name = "chart"
|
| 130 |
+
cl.user_session.set(name, image_data)
|
| 131 |
+
cl.user_session.set("generated_image", name)
|
| 132 |
+
|
| 133 |
+
await cl.Message(content="Based on the people who increased usage, here are the most valuable features").send()
|
| 134 |
+
|
| 135 |
+
generated_image = cl.user_session.get(name)
|
| 136 |
+
|
| 137 |
+
elements = []
|
| 138 |
+
actions = []
|
| 139 |
+
|
| 140 |
+
elements = [
|
| 141 |
+
cl.Image(
|
| 142 |
+
content=generated_image,
|
| 143 |
+
name=name,
|
| 144 |
+
display="inline",
|
| 145 |
+
size="large"
|
| 146 |
+
)
|
| 147 |
+
]
|
| 148 |
+
|
| 149 |
+
await cl.Message(content=name, elements=elements, actions=actions).send()
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
except Exception as e:
|
| 153 |
+
await cl.Message(content=f"An error occurred: {str(e)}").send()
|
| 154 |
+
else:
|
| 155 |
+
await cl.Message(content="Please upload a CSV file.").send()
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
# Run the ChainLit app
|
| 159 |
+
if __name__ == "__main__":
|
| 160 |
+
cl.run()
|