Spaces:
Runtime error
Runtime error
Change repo structure to adapt to HF new space GB limit
Browse files- Home.py +7 -0
- src/{FAISS.ipynb → FAISS/FAISS.ipynb} +63 -3
- src/Speeches/query.ipynb +0 -267
Home.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from src.chatbot import chatbot, keyword_search
|
|
|
|
| 3 |
#from gradio_calendar import Calendar
|
| 4 |
#from datetime import datetime
|
| 5 |
|
|
@@ -13,6 +14,11 @@ from src.chatbot import chatbot, keyword_search
|
|
| 13 |
# login(token=os.getenv("HUGGINGFACEHUB_API_TOKEN")) # Your token here
|
| 14 |
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
# Define important variables
|
| 18 |
legislature_periods = [
|
|
@@ -42,6 +48,7 @@ legislature_periods = [
|
|
| 42 |
partys = ['All','CDU/CSU','SPD','AfD','Grüne','FDP','DIE LINKE.','GB/BHE','DRP', 'WAV', 'NR', 'BP', 'FU', 'SSW', 'KPD', 'DA', 'FVP','DP','Z', 'PDS','Fraktionslos','not found', 'Gast']
|
| 43 |
|
| 44 |
|
|
|
|
| 45 |
|
| 46 |
with gr.Blocks() as App:
|
| 47 |
with gr.Tab("ChatBot"):
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from src.chatbot import chatbot, keyword_search
|
| 3 |
+
from huggingface_hub import snapshot_download
|
| 4 |
#from gradio_calendar import Calendar
|
| 5 |
#from datetime import datetime
|
| 6 |
|
|
|
|
| 14 |
# login(token=os.getenv("HUGGINGFACEHUB_API_TOKEN")) # Your token here
|
| 15 |
|
| 16 |
|
| 17 |
+
# Retrieve Vectorstore
|
| 18 |
+
REPO_ID = "TomData/test"
|
| 19 |
+
LOCAL_DIR = "src/FAISS"
|
| 20 |
+
snapshot_download(repo_id=REPO_ID, local_dir=LOCAL_DIR, repo_type="dataset")
|
| 21 |
+
|
| 22 |
|
| 23 |
# Define important variables
|
| 24 |
legislature_periods = [
|
|
|
|
| 48 |
partys = ['All','CDU/CSU','SPD','AfD','Grüne','FDP','DIE LINKE.','GB/BHE','DRP', 'WAV', 'NR', 'BP', 'FU', 'SSW', 'KPD', 'DA', 'FVP','DP','Z', 'PDS','Fraktionslos','not found', 'Gast']
|
| 49 |
|
| 50 |
|
| 51 |
+
# Define Gradio App Layout
|
| 52 |
|
| 53 |
with gr.Blocks() as App:
|
| 54 |
with gr.Tab("ChatBot"):
|
src/{FAISS.ipynb → FAISS/FAISS.ipynb}
RENAMED
|
@@ -2,11 +2,13 @@
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
-
"execution_count":
|
| 6 |
"metadata": {},
|
| 7 |
"outputs": [],
|
| 8 |
"source": [
|
| 9 |
"import pandas as pd\n",
|
|
|
|
|
|
|
| 10 |
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
|
| 11 |
"from langchain_community.document_loaders import DataFrameLoader\n",
|
| 12 |
"from langchain_community.embeddings import HuggingFaceEmbeddings\n",
|
|
@@ -19,7 +21,58 @@
|
|
| 19 |
"cell_type": "markdown",
|
| 20 |
"metadata": {},
|
| 21 |
"source": [
|
| 22 |
-
"###
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
]
|
| 24 |
},
|
| 25 |
{
|
|
@@ -173,7 +226,7 @@
|
|
| 173 |
}
|
| 174 |
],
|
| 175 |
"source": [
|
| 176 |
-
"
|
| 177 |
"df['date'] = pd.to_datetime(df['date'])\n"
|
| 178 |
]
|
| 179 |
},
|
|
@@ -304,6 +357,13 @@
|
|
| 304 |
"\n",
|
| 305 |
" \n"
|
| 306 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 307 |
}
|
| 308 |
],
|
| 309 |
"metadata": {
|
|
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
+
"execution_count": null,
|
| 6 |
"metadata": {},
|
| 7 |
"outputs": [],
|
| 8 |
"source": [
|
| 9 |
"import pandas as pd\n",
|
| 10 |
+
"import psycopg2\n",
|
| 11 |
+
"\n",
|
| 12 |
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
|
| 13 |
"from langchain_community.document_loaders import DataFrameLoader\n",
|
| 14 |
"from langchain_community.embeddings import HuggingFaceEmbeddings\n",
|
|
|
|
| 21 |
"cell_type": "markdown",
|
| 22 |
"metadata": {},
|
| 23 |
"source": [
|
| 24 |
+
"### Retrieve Speeches"
|
| 25 |
+
]
|
| 26 |
+
},
|
| 27 |
+
{
|
| 28 |
+
"cell_type": "code",
|
| 29 |
+
"execution_count": null,
|
| 30 |
+
"metadata": {},
|
| 31 |
+
"outputs": [],
|
| 32 |
+
"source": [
|
| 33 |
+
"# db_connection -----------------------------------------------------------\n",
|
| 34 |
+
"con_details = {\n",
|
| 35 |
+
" \"host\" : \"localhost\",\n",
|
| 36 |
+
" \"database\" : \"next\",\n",
|
| 37 |
+
" \"user\" : \"postgres\",\n",
|
| 38 |
+
" \"password\" : \"postgres\",\n",
|
| 39 |
+
" \"port\" : \"5433\"\n",
|
| 40 |
+
"}\n",
|
| 41 |
+
"con = psycopg2.connect(**con_details)\n",
|
| 42 |
+
"\n",
|
| 43 |
+
"# get data tables ---------------------------------------------------------\n",
|
| 44 |
+
"df = pd.read_sql_query(\"\"\"SELECT s.id,s.speech_content,s.date,f.abbreviation AS party\n",
|
| 45 |
+
" FROM open_discourse.speeches AS s\n",
|
| 46 |
+
" INNER JOIN open_discourse.factions AS f ON\n",
|
| 47 |
+
" s.faction_id = f.id;\"\"\", con)"
|
| 48 |
+
]
|
| 49 |
+
},
|
| 50 |
+
{
|
| 51 |
+
"cell_type": "markdown",
|
| 52 |
+
"metadata": {},
|
| 53 |
+
"source": [
|
| 54 |
+
"### Process speeches"
|
| 55 |
+
]
|
| 56 |
+
},
|
| 57 |
+
{
|
| 58 |
+
"cell_type": "code",
|
| 59 |
+
"execution_count": null,
|
| 60 |
+
"metadata": {},
|
| 61 |
+
"outputs": [],
|
| 62 |
+
"source": [
|
| 63 |
+
"print(set(df['party'].to_list()))"
|
| 64 |
+
]
|
| 65 |
+
},
|
| 66 |
+
{
|
| 67 |
+
"cell_type": "code",
|
| 68 |
+
"execution_count": null,
|
| 69 |
+
"metadata": {},
|
| 70 |
+
"outputs": [],
|
| 71 |
+
"source": [
|
| 72 |
+
"# Removing keys from interruptions of a speech\n",
|
| 73 |
+
"df[\"speech_content\"].replace(\"\\({\\d+}\\)\", \"\", inplace=True, regex=True) \n",
|
| 74 |
+
"df['date'] = pd.to_datetime(df['date'])\n",
|
| 75 |
+
"df"
|
| 76 |
]
|
| 77 |
},
|
| 78 |
{
|
|
|
|
| 226 |
}
|
| 227 |
],
|
| 228 |
"source": [
|
| 229 |
+
"# Convert to proper time format\n",
|
| 230 |
"df['date'] = pd.to_datetime(df['date'])\n"
|
| 231 |
]
|
| 232 |
},
|
|
|
|
| 357 |
"\n",
|
| 358 |
" \n"
|
| 359 |
]
|
| 360 |
+
},
|
| 361 |
+
{
|
| 362 |
+
"cell_type": "markdown",
|
| 363 |
+
"metadata": {},
|
| 364 |
+
"source": [
|
| 365 |
+
"This data has been uploaded to: https://huggingface.co/datasets/TomData/test"
|
| 366 |
+
]
|
| 367 |
}
|
| 368 |
],
|
| 369 |
"metadata": {
|
src/Speeches/query.ipynb
DELETED
|
@@ -1,267 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"cells": [
|
| 3 |
-
{
|
| 4 |
-
"cell_type": "code",
|
| 5 |
-
"execution_count": 1,
|
| 6 |
-
"metadata": {},
|
| 7 |
-
"outputs": [],
|
| 8 |
-
"source": [
|
| 9 |
-
"import psycopg2\n",
|
| 10 |
-
"import pandas as pd"
|
| 11 |
-
]
|
| 12 |
-
},
|
| 13 |
-
{
|
| 14 |
-
"cell_type": "markdown",
|
| 15 |
-
"metadata": {},
|
| 16 |
-
"source": [
|
| 17 |
-
"### Pandas\n"
|
| 18 |
-
]
|
| 19 |
-
},
|
| 20 |
-
{
|
| 21 |
-
"cell_type": "code",
|
| 22 |
-
"execution_count": 13,
|
| 23 |
-
"metadata": {},
|
| 24 |
-
"outputs": [
|
| 25 |
-
{
|
| 26 |
-
"name": "stderr",
|
| 27 |
-
"output_type": "stream",
|
| 28 |
-
"text": [
|
| 29 |
-
"C:\\Users\\Tom\\AppData\\Local\\Temp\\ipykernel_12368\\2515868855.py:12: UserWarning: pandas only supports SQLAlchemy connectable (engine/connection) or database string URI or sqlite3 DBAPI2 connection. Other DBAPI2 objects are not tested. Please consider using SQLAlchemy.\n",
|
| 30 |
-
" df = pd.read_sql_query(\"\"\"SELECT s.id,s.speech_content,s.date,f.abbreviation AS party\n"
|
| 31 |
-
]
|
| 32 |
-
}
|
| 33 |
-
],
|
| 34 |
-
"source": [
|
| 35 |
-
"# db_connection -----------------------------------------------------------\n",
|
| 36 |
-
"con_details = {\n",
|
| 37 |
-
" \"host\" : \"localhost\",\n",
|
| 38 |
-
" \"database\" : \"next\",\n",
|
| 39 |
-
" \"user\" : \"postgres\",\n",
|
| 40 |
-
" \"password\" : \"postgres\",\n",
|
| 41 |
-
" \"port\" : \"5433\"\n",
|
| 42 |
-
"}\n",
|
| 43 |
-
"con = psycopg2.connect(**con_details)\n",
|
| 44 |
-
"\n",
|
| 45 |
-
"# get data tables ---------------------------------------------------------\n",
|
| 46 |
-
"df = pd.read_sql_query(\"\"\"SELECT s.id,s.speech_content,s.date,f.abbreviation AS party\n",
|
| 47 |
-
" FROM open_discourse.speeches AS s\n",
|
| 48 |
-
" INNER JOIN open_discourse.factions AS f ON\n",
|
| 49 |
-
" s.faction_id = f.id;\"\"\", con)\n",
|
| 50 |
-
"\n",
|
| 51 |
-
"\n"
|
| 52 |
-
]
|
| 53 |
-
},
|
| 54 |
-
{
|
| 55 |
-
"cell_type": "markdown",
|
| 56 |
-
"metadata": {},
|
| 57 |
-
"source": [
|
| 58 |
-
"### Data Cleaning"
|
| 59 |
-
]
|
| 60 |
-
},
|
| 61 |
-
{
|
| 62 |
-
"cell_type": "code",
|
| 63 |
-
"execution_count": 14,
|
| 64 |
-
"metadata": {},
|
| 65 |
-
"outputs": [
|
| 66 |
-
{
|
| 67 |
-
"name": "stdout",
|
| 68 |
-
"output_type": "stream",
|
| 69 |
-
"text": [
|
| 70 |
-
"{'FVP', 'DA', 'FDP', 'BP', 'DP', 'DRP', 'PDS', 'SSW', 'Grüne', 'Fraktionslos', 'WAV', 'Gast', 'FU', 'KPD', 'DIE LINKE.', 'CDU/CSU', 'not found', 'GB/BHE', 'AfD', 'SPD', 'NR', 'Z'}\n"
|
| 71 |
-
]
|
| 72 |
-
}
|
| 73 |
-
],
|
| 74 |
-
"source": [
|
| 75 |
-
"# Unique partys\n",
|
| 76 |
-
"print(set(df['party'].to_list()))"
|
| 77 |
-
]
|
| 78 |
-
},
|
| 79 |
-
{
|
| 80 |
-
"cell_type": "code",
|
| 81 |
-
"execution_count": null,
|
| 82 |
-
"metadata": {},
|
| 83 |
-
"outputs": [
|
| 84 |
-
{
|
| 85 |
-
"data": {
|
| 86 |
-
"text/html": [
|
| 87 |
-
"<div>\n",
|
| 88 |
-
"<style scoped>\n",
|
| 89 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
| 90 |
-
" vertical-align: middle;\n",
|
| 91 |
-
" }\n",
|
| 92 |
-
"\n",
|
| 93 |
-
" .dataframe tbody tr th {\n",
|
| 94 |
-
" vertical-align: top;\n",
|
| 95 |
-
" }\n",
|
| 96 |
-
"\n",
|
| 97 |
-
" .dataframe thead th {\n",
|
| 98 |
-
" text-align: right;\n",
|
| 99 |
-
" }\n",
|
| 100 |
-
"</style>\n",
|
| 101 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
| 102 |
-
" <thead>\n",
|
| 103 |
-
" <tr style=\"text-align: right;\">\n",
|
| 104 |
-
" <th></th>\n",
|
| 105 |
-
" <th>id</th>\n",
|
| 106 |
-
" <th>speech_content</th>\n",
|
| 107 |
-
" <th>date</th>\n",
|
| 108 |
-
" <th>party</th>\n",
|
| 109 |
-
" </tr>\n",
|
| 110 |
-
" </thead>\n",
|
| 111 |
-
" <tbody>\n",
|
| 112 |
-
" <tr>\n",
|
| 113 |
-
" <th>0</th>\n",
|
| 114 |
-
" <td>0</td>\n",
|
| 115 |
-
" <td>Meine Damen und Herren! Ich eröffne die 2. Sit...</td>\n",
|
| 116 |
-
" <td>1949-09-12</td>\n",
|
| 117 |
-
" <td>not found</td>\n",
|
| 118 |
-
" </tr>\n",
|
| 119 |
-
" <tr>\n",
|
| 120 |
-
" <th>1</th>\n",
|
| 121 |
-
" <td>1</td>\n",
|
| 122 |
-
" <td>Der Bundesrat ist versammelt, Herr Präsident.\\n</td>\n",
|
| 123 |
-
" <td>1949-09-12</td>\n",
|
| 124 |
-
" <td>not found</td>\n",
|
| 125 |
-
" </tr>\n",
|
| 126 |
-
" <tr>\n",
|
| 127 |
-
" <th>2</th>\n",
|
| 128 |
-
" <td>2</td>\n",
|
| 129 |
-
" <td>Ich danke für diese Erklärung. Ich stelle dami...</td>\n",
|
| 130 |
-
" <td>1949-09-12</td>\n",
|
| 131 |
-
" <td>not found</td>\n",
|
| 132 |
-
" </tr>\n",
|
| 133 |
-
" <tr>\n",
|
| 134 |
-
" <th>3</th>\n",
|
| 135 |
-
" <td>3</td>\n",
|
| 136 |
-
" <td>Ja, ich habe den Wunsch.\\n</td>\n",
|
| 137 |
-
" <td>1949-09-12</td>\n",
|
| 138 |
-
" <td>not found</td>\n",
|
| 139 |
-
" </tr>\n",
|
| 140 |
-
" <tr>\n",
|
| 141 |
-
" <th>4</th>\n",
|
| 142 |
-
" <td>4</td>\n",
|
| 143 |
-
" <td>Ich erteile dem Herrn Bundespräsidenten das Wo...</td>\n",
|
| 144 |
-
" <td>1949-09-12</td>\n",
|
| 145 |
-
" <td>not found</td>\n",
|
| 146 |
-
" </tr>\n",
|
| 147 |
-
" <tr>\n",
|
| 148 |
-
" <th>...</th>\n",
|
| 149 |
-
" <td>...</td>\n",
|
| 150 |
-
" <td>...</td>\n",
|
| 151 |
-
" <td>...</td>\n",
|
| 152 |
-
" <td>...</td>\n",
|
| 153 |
-
" </tr>\n",
|
| 154 |
-
" <tr>\n",
|
| 155 |
-
" <th>930955</th>\n",
|
| 156 |
-
" <td>1084268</td>\n",
|
| 157 |
-
" <td>\\n\\nWir sind zwar Kollegen.</td>\n",
|
| 158 |
-
" <td>2022-12-16</td>\n",
|
| 159 |
-
" <td>not found</td>\n",
|
| 160 |
-
" </tr>\n",
|
| 161 |
-
" <tr>\n",
|
| 162 |
-
" <th>930956</th>\n",
|
| 163 |
-
" <td>1084269</td>\n",
|
| 164 |
-
" <td>\\n\\nLiebe, sehr geehrte Frau Präsidentin!</td>\n",
|
| 165 |
-
" <td>2022-12-16</td>\n",
|
| 166 |
-
" <td>CDU/CSU</td>\n",
|
| 167 |
-
" </tr>\n",
|
| 168 |
-
" <tr>\n",
|
| 169 |
-
" <th>930957</th>\n",
|
| 170 |
-
" <td>1084270</td>\n",
|
| 171 |
-
" <td>\\n\\nVielen Dank.</td>\n",
|
| 172 |
-
" <td>2022-12-16</td>\n",
|
| 173 |
-
" <td>not found</td>\n",
|
| 174 |
-
" </tr>\n",
|
| 175 |
-
" <tr>\n",
|
| 176 |
-
" <th>930958</th>\n",
|
| 177 |
-
" <td>1084272</td>\n",
|
| 178 |
-
" <td>\\n\\nDen Abschluss dieser Aktuellen Stunde bild...</td>\n",
|
| 179 |
-
" <td>2022-12-16</td>\n",
|
| 180 |
-
" <td>not found</td>\n",
|
| 181 |
-
" </tr>\n",
|
| 182 |
-
" <tr>\n",
|
| 183 |
-
" <th>930959</th>\n",
|
| 184 |
-
" <td>1084273</td>\n",
|
| 185 |
-
" <td>\\n\\nSehr geehrte Frau Präsidentin! Werte Kolle...</td>\n",
|
| 186 |
-
" <td>2022-12-16</td>\n",
|
| 187 |
-
" <td>SPD</td>\n",
|
| 188 |
-
" </tr>\n",
|
| 189 |
-
" </tbody>\n",
|
| 190 |
-
"</table>\n",
|
| 191 |
-
"<p>930960 rows × 4 columns</p>\n",
|
| 192 |
-
"</div>"
|
| 193 |
-
],
|
| 194 |
-
"text/plain": [
|
| 195 |
-
" id speech_content \\\n",
|
| 196 |
-
"0 0 Meine Damen und Herren! Ich eröffne die 2. Sit... \n",
|
| 197 |
-
"1 1 Der Bundesrat ist versammelt, Herr Präsident.\\n \n",
|
| 198 |
-
"2 2 Ich danke für diese Erklärung. Ich stelle dami... \n",
|
| 199 |
-
"3 3 Ja, ich habe den Wunsch.\\n \n",
|
| 200 |
-
"4 4 Ich erteile dem Herrn Bundespräsidenten das Wo... \n",
|
| 201 |
-
"... ... ... \n",
|
| 202 |
-
"930955 1084268 \\n\\nWir sind zwar Kollegen. \n",
|
| 203 |
-
"930956 1084269 \\n\\nLiebe, sehr geehrte Frau Präsidentin! \n",
|
| 204 |
-
"930957 1084270 \\n\\nVielen Dank. \n",
|
| 205 |
-
"930958 1084272 \\n\\nDen Abschluss dieser Aktuellen Stunde bild... \n",
|
| 206 |
-
"930959 1084273 \\n\\nSehr geehrte Frau Präsidentin! Werte Kolle... \n",
|
| 207 |
-
"\n",
|
| 208 |
-
" date party \n",
|
| 209 |
-
"0 1949-09-12 not found \n",
|
| 210 |
-
"1 1949-09-12 not found \n",
|
| 211 |
-
"2 1949-09-12 not found \n",
|
| 212 |
-
"3 1949-09-12 not found \n",
|
| 213 |
-
"4 1949-09-12 not found \n",
|
| 214 |
-
"... ... ... \n",
|
| 215 |
-
"930955 2022-12-16 not found \n",
|
| 216 |
-
"930956 2022-12-16 CDU/CSU \n",
|
| 217 |
-
"930957 2022-12-16 not found \n",
|
| 218 |
-
"930958 2022-12-16 not found \n",
|
| 219 |
-
"930959 2022-12-16 SPD \n",
|
| 220 |
-
"\n",
|
| 221 |
-
"[930960 rows x 4 columns]"
|
| 222 |
-
]
|
| 223 |
-
},
|
| 224 |
-
"execution_count": 16,
|
| 225 |
-
"metadata": {},
|
| 226 |
-
"output_type": "execute_result"
|
| 227 |
-
}
|
| 228 |
-
],
|
| 229 |
-
"source": [
|
| 230 |
-
"df[\"speech_content\"].replace(\"\\({\\d+}\\)\", \"\", inplace=True, regex=True) #removing keys from interruptions\n",
|
| 231 |
-
"df['date'] = pd.to_datetime(df['date'])\n",
|
| 232 |
-
"df"
|
| 233 |
-
]
|
| 234 |
-
},
|
| 235 |
-
{
|
| 236 |
-
"cell_type": "code",
|
| 237 |
-
"execution_count": null,
|
| 238 |
-
"metadata": {},
|
| 239 |
-
"outputs": [],
|
| 240 |
-
"source": [
|
| 241 |
-
"# Dave to pickle\n",
|
| 242 |
-
"df.to_pickle(\"speeches_1949_09_12\")"
|
| 243 |
-
]
|
| 244 |
-
}
|
| 245 |
-
],
|
| 246 |
-
"metadata": {
|
| 247 |
-
"kernelspec": {
|
| 248 |
-
"display_name": "Python 3",
|
| 249 |
-
"language": "python",
|
| 250 |
-
"name": "python3"
|
| 251 |
-
},
|
| 252 |
-
"language_info": {
|
| 253 |
-
"codemirror_mode": {
|
| 254 |
-
"name": "ipython",
|
| 255 |
-
"version": 3
|
| 256 |
-
},
|
| 257 |
-
"file_extension": ".py",
|
| 258 |
-
"mimetype": "text/x-python",
|
| 259 |
-
"name": "python",
|
| 260 |
-
"nbconvert_exporter": "python",
|
| 261 |
-
"pygments_lexer": "ipython3",
|
| 262 |
-
"version": "3.11.4"
|
| 263 |
-
}
|
| 264 |
-
},
|
| 265 |
-
"nbformat": 4,
|
| 266 |
-
"nbformat_minor": 2
|
| 267 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|