File size: 6,615 Bytes
0b5b901 87012a8 4189fe1 9bf14d0 87012a8 5031731 d9ea17d 0316ec3 0b5b901 479f253 2008a3f 1ab029d 0b5b901 5031731 0b5b901 479f253 0b5b901 bca75ea 0b5b901 bca75ea 0b5b901 9bf14d0 0dfc310 9bf14d0 0b5b901 9bf14d0 0b5b901 5031731 0b5b901 9bf14d0 5031731 bca75ea 0b5b901 f63f843 5031731 0b5b901 5031731 bca75ea 0b5b901 5031731 f92444a 0b5b901 87012a8 479f253 0b5b901 a8606ac 0b5b901 a09ea48 4189fe1 0b5b901 5031731 0b5b901 f63f843 479f253 5d73119 5031731 5d73119 5031731 0b5b901 9ef5e61 5031731 0b5b901 5031731 f92444a 0b5b901 9ef5e61 0b5b901 5d73119 0b5b901 87012a8 0b5b901 9ef5e61 bca75ea 0b5b901 bca75ea 5031731 479f253 a09ea48 5031731 479f253 5031731 0b5b901 5031731 0b5b901 a4cfefc 5031731 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
# app.py ──────────────────────────────────────────────────────────────
import os, json, torch, asyncio
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from huggingface_hub import login
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor
from transformers.generation.utils import Cache
from snac import SNAC
# ── 0 · Login & Device ───────────────────────────────────────────────
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN:
login(HF_TOKEN)
device = "cuda" if torch.cuda.is_available() else "cpu"
torch.backends.cuda.enable_flash_sdp(False) # CUDA‑Assert‑Fix
# ── 1 · Konstanten ───────────────────────────────────────────────────
REPO = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
CHUNK_TOKENS = 50
START_TOKEN = 128259
NEW_BLOCK = 128257
EOS_TOKEN = 128258
AUDIO_BASE = 128266
VALID_AUDIO = torch.arange(AUDIO_BASE, AUDIO_BASE+4096)
# ── 2 · Logit‑Masker ─────────────────────────────────────────────────
class DynamicAudioMask(LogitsProcessor):
def __init__(self, audio_ids: torch.Tensor, min_blocks:int=1):
super().__init__()
self.audio_ids = audio_ids
self.ctrl_ids = torch.tensor([NEW_BLOCK], device=audio_ids.device)
self.min_blocks = min_blocks
self.blocks = 0
def __call__(self, inp, scores):
allow = torch.cat([self.audio_ids, self.ctrl_ids])
if self.blocks >= self.min_blocks:
allow = torch.cat([allow,
torch.tensor([EOS_TOKEN], device=scores.device)])
mask = torch.full_like(scores, float("-inf"))
mask[:, allow] = 0
return scores + mask
# ── 3 · FastAPI‑App ──────────────────────────────────────────────────
app = FastAPI()
@app.get("/")
async def root():
return {"msg": "Orpheus‑TTS alive"}
@app.on_event("startup")
async def load():
global tok, model, snac, masker
print("⏳ Lade Modelle …")
tok = AutoTokenizer.from_pretrained(REPO)
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
model = AutoModelForCausalLM.from_pretrained(
REPO,
low_cpu_mem_usage=True,
device_map={"":0} if device=="cuda" else None,
torch_dtype=torch.bfloat16 if device=="cuda" else None)
model.config.pad_token_id = model.config.eos_token_id
model.config.use_cache = True
masker = DynamicAudioMask(VALID_AUDIO.to(device))
print("✅ Modelle geladen")
# ── 4 · Hilfsfunktionen ──────────────────────────────────────────────
def build_inputs(text:str, voice:str):
prompt = f"{voice}: {text}"
ids = tok(prompt, return_tensors="pt").input_ids.to(device)
ids = torch.cat([torch.tensor([[START_TOKEN]], device=device),
ids,
torch.tensor([[128009,128260]], device=device)],1)
return ids, torch.ones_like(ids)
def decode_block(block):
l1,l2,l3=[],[],[]
l1.append(block[0])
l2.append(block[1]-4096)
l3.extend([block[2]-8192, block[3]-12288])
l2.append(block[4]-16384)
l3.extend([block[5]-20480, block[6]-24576])
codes=[torch.tensor(x,device=device).unsqueeze(0) for x in (l1,l2,l3)]
audio=snac.decode(codes).squeeze().cpu().numpy()
return (audio*32767).astype("int16").tobytes()
# ── 5 · WebSocket‑TTS ────────────────────────────────────────────────
@app.websocket("/ws/tts")
async def tts(ws:WebSocket):
await ws.accept()
try:
req = json.loads(await ws.receive_text())
text = req.get("text","")
voice = req.get("voice","Jakob")
ids, attn = build_inputs(text, voice)
total_len = ids.shape[1] # Länge des Prompts
past = None
last_tok = None
buf = []
while True:
out = model.generate(
input_ids = ids if past is None else torch.tensor([[last_tok]], device=device),
attention_mask = attn if past is None else None,
past_key_values = past,
max_new_tokens = CHUNK_TOKENS,
logits_processor= [masker],
do_sample=True, temperature=0.7, top_p=0.95,
use_cache=True, return_dict_in_generate=True,
return_legacy_cache=True)
pkv = out.past_key_values
if isinstance(pkv, Cache): pkv = pkv.to_legacy()
past = pkv
seq = out.sequences[0].tolist()
new = seq[total_len:] # alles *nach* Prompt
total_len = len(seq) # fürs nächste Mal
print("new tokens:", new[:32])
if not new: # nichts generiert
raise StopIteration
for t in new:
last_tok = t
if t == EOS_TOKEN: raise StopIteration
if t == NEW_BLOCK:
buf.clear(); continue
buf.append(t-AUDIO_BASE)
if len(buf)==7:
await ws.send_bytes(decode_block(buf))
buf.clear()
masker.blocks += 1
ids, attn = None, None # ab jetzt 1‑Token‑Step
except (StopIteration, WebSocketDisconnect):
pass
except Exception as e:
print("❌ WS‑Error:", e)
if ws.client_state.name != "DISCONNECTED":
await ws.close(code=1011)
finally:
if ws.client_state.name != "DISCONNECTED":
try: await ws.close()
except RuntimeError: pass
# ── 6 · local run ────────────────────────────────────────────────────
if __name__ == "__main__":
import uvicorn
uvicorn.run("app:app", host="0.0.0.0", port=7860)
|