File size: 6,013 Bytes
2c15189
 
0316ec3
d9ea17d
4189fe1
9bf14d0
a09ea48
d9ea17d
0316ec3
7b0d42c
d9ea17d
2c15189
9bf14d0
2008a3f
7b0d42c
1ab029d
0316ec3
9bf14d0
0dfc310
9bf14d0
 
d9ea17d
9bf14d0
d9ea17d
 
 
 
 
9bf14d0
d9ea17d
 
7b0d42c
 
d9ea17d
7b0d42c
 
 
d9ea17d
9bf14d0
d9ea17d
7b0d42c
 
9bf14d0
d9ea17d
9bf14d0
3281189
7b0d42c
d9ea17d
 
 
 
 
7b0d42c
 
 
d9ea17d
7b0d42c
 
 
 
d9ea17d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b0d42c
 
d9ea17d
 
 
 
 
 
 
7b0d42c
d9ea17d
 
 
7b0d42c
d9ea17d
 
 
 
7b0d42c
d9ea17d
 
 
 
 
 
 
 
 
 
 
9bf14d0
d9ea17d
 
 
9bf14d0
d9ea17d
 
9bf14d0
a8606ac
2c15189
a09ea48
4189fe1
10be82b
 
9bf14d0
d9ea17d
 
10be82b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c70d8eb
fd06e70
4189fe1
fd06e70
a09ea48
2c15189
a09ea48
d9ea17d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import os
import json
import torch
import numpy as np
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from huggingface_hub import login
from transformers import AutoModelForCausalLM, AutoTokenizer
from snac import SNAC

# — HF‑Token & Login (falls gesetzt) —
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN:
    login(HF_TOKEN)

# — Device auswählen —
device = "cuda" if torch.cuda.is_available() else "cpu"

app = FastAPI()

@app.get("/")
async def read_root():
    return {"message": "Hello, world!"}

# — Globale Modelle —
model = None
tokenizer = None
snac_model = None

@app.on_event("startup")
async def load_models():
    global model, tokenizer, snac_model

    # 1) SNAC laden
    snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)

    # 2) Orpheus‑TTS (public “natural”-Variante)
    REPO = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
    tokenizer = AutoTokenizer.from_pretrained(REPO)
    model = AutoModelForCausalLM.from_pretrained(
        REPO,
        device_map="auto" if device == "cuda" else None,
        torch_dtype=torch.bfloat16 if device == "cuda" else None,
        low_cpu_mem_usage=True
    ).to(device)
    model.config.pad_token_id = model.config.eos_token_id

# — Marker und Offsets —
START_TOKEN  = 128259
END_TOKENS   = [128009, 128260]
AUDIO_OFFSET = 128266

def process_single_prompt(prompt: str, voice: str) -> list[int]:
    # Prompt zusammenstellen
    text = f"{voice}: {prompt}" if voice and voice != "in_prompt" else prompt

    # Tokenize + Marker
    ids = tokenizer(text, return_tensors="pt").input_ids.to(device)
    start = torch.tensor([[START_TOKEN]], dtype=torch.int64, device=device)
    end   = torch.tensor([END_TOKENS],   dtype=torch.int64, device=device)
    input_ids = torch.cat([start, ids, end], dim=1)
    attention_mask = torch.ones_like(input_ids)

    # Generieren
    gen = model.generate(
        input_ids=input_ids,
        attention_mask=attention_mask,
        max_new_tokens=4000,
        do_sample=True,
        temperature=0.6,
        top_p=0.95,
        repetition_penalty=1.1,
        eos_token_id=128258,
        use_cache=True,
    )

    # Nach letztem START_TOKEN croppen
    token_to_find = 128257
    token_to_remove = 128258
    idxs = (gen == token_to_find).nonzero(as_tuple=True)[1]
    if idxs.numel() > 0:
        cropped = gen[:, idxs[-1] + 1 :]
    else:
        cropped = gen

    # Padding entfernen & Länge auf Vielfaches von 7 bringen
    row = cropped[0][cropped[0] != token_to_remove]
    new_len = (row.size(0) // 7) * 7
    trimmed = row[:new_len].tolist()

    # Offset abziehen
    return [t - AUDIO_OFFSET for t in trimmed]

def redistribute_codes(code_list: list[int]) -> np.ndarray:
    # 7er‑Blöcke auf 3 Layer verteilen
    layer1, layer2, layer3 = [], [], []
    for i in range(len(code_list) // 7):
        b = code_list[7*i : 7*i+7]
        layer1.append(b[0])
        layer2.append(b[1] -   4096)
        layer3.append(b[2] - 2*4096)
        layer3.append(b[3] - 3*4096)
        layer2.append(b[4] - 4*4096)
        layer3.append(b[5] - 5*4096)
        layer3.append(b[6] - 6*4096)

    codes = [
        torch.tensor(layer1, device=device).unsqueeze(0),
        torch.tensor(layer2, device=device).unsqueeze(0),
        torch.tensor(layer3, device=device).unsqueeze(0),
    ]
    audio = snac_model.decode(codes).squeeze().cpu().numpy()
    return audio  # float32 @24 kHz

@app.websocket("/ws/tts")
async def tts_ws(ws: WebSocket):
    await ws.accept()
    try:
        msg   = await ws.receive_text()
        req   = json.loads(msg)
        text  = req.get("text", "")
        voice = req.get("voice", "")

        # 1) Prompt vorbereiten
        input_ids, attention_mask = prepare_inputs(text, voice)
        past_kvs = None
        buffer   = []

        # 2) Token‑für‑Token (oder in kleinen Blöcken)
        while True:
            # Nur max_new_tokens=50 pro Aufruf
            out = model.generate(
                input_ids=input_ids   if past_kvs is None else None,
                attention_mask=attention_mask if past_kvs is None else None,
                past_key_values=past_kvs,
                use_cache=True,
                do_sample=True,
                temperature=0.7,
                top_p=0.95,
                repetition_penalty=1.1,
                max_new_tokens=50,
                eos_token_id=128258,
                return_dict_in_generate=True,
                output_past_key_values=True,
                return_legacy_cache=True,  # falls Ihr noch das alte past_key_values-Format braucht
            )

            # Extrahiere neue Token (ohne die already generated ones)
            new_ids = out.sequences[0, input_ids.shape[-1]:].tolist()
            past_kvs = out.past_key_values

            for tok in new_ids:
                if tok == model.config.eos_token_id:
                    # Stream zu Ende
                    break
                if tok == 128257:    # Reset-Start‑Marker
                    buffer = []
                    continue
                buffer.append(tok - AUDIO_OFFSET)

                # Sobald wir 7 Audio‑Codes gesammelt haben → dekodieren & schicken
                if len(buffer) == 7:
                    pcm = decode_block(buffer)
                    buffer = []
                    await ws.send_bytes(pcm)

            # Wenn EOS im Chunk war, abbrechen
            if model.config.eos_token_id in new_ids:
                break

            # Danach weiter mit nächsten 50 Tokens,
            # input_ids & attention_mask nur beim ersten Aufruf nötig
            input_ids = None
            attention_mask = None

        # 3) Am Ende WebSocket sauber schließen
        await ws.close()

    except WebSocketDisconnect:
        pass
    except Exception as e:
        print("Error in /ws/tts:", e)
        await ws.close(code=1011)

if __name__ == "__main__":
    import uvicorn
    uvicorn.run("app:app", host="0.0.0.0", port=7860)