File size: 6,091 Bytes
f92444a 4189fe1 9bf14d0 f92444a 10540d6 d9ea17d 0316ec3 f92444a 2008a3f 1ab029d f92444a bca75ea f92444a bca75ea f92444a bca75ea f92444a bca75ea f92444a 9bf14d0 0dfc310 9bf14d0 f92444a 9bf14d0 d9ea17d bca75ea 9bf14d0 f63f843 bca75ea f63f843 bca75ea f92444a bca75ea f92444a a8606ac bca75ea a09ea48 4189fe1 bca75ea 9ef5e61 4c833ce f63f843 9ef5e61 bca75ea 4c833ce bca75ea 4c833ce f63f843 9ef5e61 f92444a 4c833ce f92444a 4c833ce 9ef5e61 4c833ce 9ef5e61 4c833ce 9ef5e61 bca75ea 4c833ce bca75ea 4c833ce a09ea48 bca75ea f92444a 4c833ce f92444a a4cfefc f92444a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
# app.py -------------------------------------------------------------
import os, json, torch
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from huggingface_hub import login
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor
from transformers.generation.utils import Cache
from snac import SNAC
# ββ 0. Auth & Device ββββββββββββββββββββββββββββββββββββββββββββββββ
if (tok := os.getenv("HF_TOKEN")):
login(tok)
device = "cuda" if torch.cuda.is_available() else "cpu"
torch.backends.cuda.enable_flash_sdp(False) # PyTorchβ2.2 fix
# ββ 1. Konstanten βββββββββββββββββββββββββββββββββββββββββββββββββββ
REPO = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
CHUNK_TOKENS = 50 # β€Β 50Β βΒ <Β 1Β s Latenz
START_TOKEN = 128259
NEW_BLOCK_TOKEN = 128257
EOS_TOKEN = 128258
AUDIO_BASE = 128266
VALID_AUDIO_IDS = torch.arange(AUDIO_BASE, AUDIO_BASE + 4096)
# ββ 2. LogitβMaske (nur Audioβ und SteuerβToken) ββββββββββββββββββ
class AudioMask(LogitsProcessor):
def __init__(self, allowed: torch.Tensor): # allowed @device!
self.allowed = allowed
def __call__(self, _ids, scores):
mask = torch.full_like(scores, float("-inf"))
mask[:, self.allowed] = 0.0
return scores + mask
ALLOWED_IDS = torch.cat(
[VALID_AUDIO_IDS,
torch.tensor([NEW_BLOCK_TOKEN, EOS_TOKEN])]
).to(device)
MASKER = AudioMask(ALLOWED_IDS)
# ββ 3. FastAPI GrundgerΓΌst ββββββββββββββββββββββββββββββββββββββββββ
app = FastAPI()
@app.get("/")
async def root():
return {"msg": "OrpheusβTTS ready"}
# global handles
tok = model = snac = None
@app.on_event("startup")
async def load_models():
global tok, model, snac
tok = AutoTokenizer.from_pretrained(REPO)
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
model = AutoModelForCausalLM.from_pretrained(
REPO,
low_cpu_mem_usage=True,
device_map={"": 0} if device == "cuda" else None,
torch_dtype=torch.bfloat16 if device == "cuda" else None,
)
model.config.pad_token_id = model.config.eos_token_id
model.config.use_cache = True
# ββ 4. Helper βββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def build_inputs(text: str, voice: str):
prompt = f"{voice}: {text}"
ids = tok(prompt, return_tensors="pt").input_ids.to(device)
ids = torch.cat(
[
torch.tensor([[START_TOKEN]], device=device),
ids,
torch.tensor([[128009, 128260]], device=device),
],
1,
)
return ids, torch.ones_like(ids)
def decode_block(b7: list[int]) -> bytes:
l1, l2, l3 = [], [], []
l1.append(b7[0])
l2.append(b7[1] - 4096)
l3.extend([b7[2] - 8192, b7[3] - 12288])
l2.append(b7[4] - 16384)
l3.extend([b7[5] - 20480, b7[6] - 24576])
codes = [torch.tensor(x, device=device).unsqueeze(0) for x in (l1, l2, l3)]
audio = snac.decode(codes).squeeze().cpu().numpy()
return (audio * 32767).astype("int16").tobytes()
def new_tokens_only(full_seq, prev_len):
"""liefert Liste der Tokens, die *neu* hinzukamen"""
return full_seq[prev_len:].tolist()
# ββ 5. WebSocketβEndpoint βββββββββββββββββββββββββββββββββββββββββββ
@app.websocket("/ws/tts")
async def tts(ws: WebSocket):
await ws.accept()
try:
req = json.loads(await ws.receive_text())
ids, attn = build_inputs(req.get("text", ""), req.get("voice", "Jakob"))
prompt_len = ids.size(1)
past, buf = None, []
while True:
gen = model.generate(
input_ids=ids if past is None else None,
attention_mask=attn if past is None else None,
past_key_values=past,
max_new_tokens=CHUNK_TOKENS,
logits_processor=[MASKER],
do_sample=True, temperature=0.7, top_p=0.95,
return_dict_in_generate=True,
use_cache=True, return_legacy_cache=True,
)
past = gen.past_key_values if not isinstance(gen.past_key_values, Cache) else gen.past_key_values.to_legacy()
seq = gen.sequences[0].tolist()
new_tok = seq[prompt_len:]
prompt_len = len(seq)
if not new_tok:
continue # selten, aber mΓΆglich
for t in new_tok:
if t == EOS_TOKEN:
# ein einziges CloseβFrame genΓΌgt
await ws.close() # <ββ einziges explizites close
return
if t == NEW_BLOCK_TOKEN:
buf.clear(); continue
buf.append(t - AUDIO_BASE)
if len(buf) == 7:
await ws.send_bytes(decode_block(buf))
buf.clear()
ids = attn = None # nur noch Cache
except WebSocketDisconnect:
pass # Client ging von selbst
except Exception as e:
print("WSβError:", e)
if ws.client_state.name == "CONNECTED":
await ws.close(code=1011) # Fehler melden
# ββ 6. Local run ββββββββββββββββββββββββββββββββββββββββββββββββββββ
if __name__ == "__main__":
import uvicorn, sys
port = int(sys.argv[1]) if len(sys.argv) > 1 else 7860
uvicorn.run("app:app", host="0.0.0.0", port=port)
|