File size: 14,403 Bytes
0b5b901 dbb4a9f 4189fe1 9bf14d0 dbb4a9f 0316ec3 e3958ab 479f253 dbb4a9f 479f253 2008a3f dbb4a9f e3958ab dbb4a9f 55145d2 dbb4a9f 55145d2 53012c3 dbb4a9f e3958ab dbb4a9f 479f253 dbb4a9f 55145d2 53012c3 e3958ab dbb4a9f 53012c3 dbb4a9f e3958ab dbb4a9f 55145d2 a0cc672 dbb4a9f a0cc672 e3958ab dbb4a9f 0dfc310 dbb4a9f 641d199 dbb4a9f 53012c3 641d199 53012c3 dbb4a9f 53012c3 dbb4a9f 53012c3 dbb4a9f 53012c3 55145d2 dbb4a9f 53012c3 dbb4a9f 53012c3 dbb4a9f 53012c3 dbb4a9f 53012c3 dbb4a9f 53012c3 dbb4a9f 53012c3 dbb4a9f 55145d2 53012c3 55145d2 dbb4a9f 53012c3 55145d2 53012c3 55145d2 53012c3 55145d2 53012c3 55145d2 53012c3 55145d2 53012c3 55145d2 53012c3 55145d2 53012c3 55145d2 53012c3 55145d2 53012c3 55145d2 53012c3 55145d2 53012c3 55145d2 53012c3 55145d2 53012c3 55145d2 53012c3 55145d2 53012c3 55145d2 53012c3 55145d2 53012c3 55145d2 53012c3 55145d2 53012c3 55145d2 53012c3 55145d2 53012c3 55145d2 53012c3 55145d2 53012c3 55145d2 53012c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
# app.py ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
import os
import json
import torch
import asyncio
import traceback # Import traceback for better error logging
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from huggingface_hub import login
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, StoppingCriteria, StoppingCriteriaList
# Import BaseStreamer for the interface
from transformers.generation.streamers import BaseStreamer
from snac import SNAC # Ensure you have 'pip install snac'
# --- Globals (populated in load_models) ---
tok = None
model = None
snac = None
masker = None
stopping_criteria = None
device = "cuda" if torch.cuda.is_available() else "cpu"
# 0) Login + Device ---------------------------------------------------
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN:
print("π Logging in to Hugging Face Hub...")
login(HF_TOKEN)
# torch.backends.cuda.enable_flash_sdp(False) # Uncomment if needed for PyTorchβ2.2βBug
# 1) Konstanten -------------------------------------------------------
REPO = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
# CHUNK_TOKENS = 50 # Not directly used by us with the streamer approach
START_TOKEN = 128259
NEW_BLOCK = 128257
EOS_TOKEN = 128258
AUDIO_BASE = 128266
AUDIO_SPAN = 4096 * 7 # 28672 Codes
CODEBOOK_SIZE = 4096 # Explicitly define the codebook size
# Create AUDIO_IDS on the correct device later in load_models
AUDIO_IDS_CPU = torch.arange(AUDIO_BASE, AUDIO_BASE + AUDIO_SPAN)
# 2) LogitβMask -------------------------------------------------------
class AudioMask(LogitsProcessor):
def __init__(self, audio_ids: torch.Tensor, new_block_token_id: int, eos_token_id: int):
super().__init__()
# Allow NEW_BLOCK and all valid audio tokens initially
self.allow = torch.cat([
torch.tensor([new_block_token_id], device=audio_ids.device, dtype=torch.long),
audio_ids
], dim=0)
self.eos = torch.tensor([eos_token_id], device=audio_ids.device, dtype=torch.long)
self.allow_with_eos = torch.cat([self.allow, self.eos], dim=0)
self.sent_blocks = 0 # State: Number of audio blocks sent
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
current_allow = self.allow_with_eos if self.sent_blocks > 0 else self.allow
mask = torch.full_like(scores, float("-inf"))
mask[:, current_allow] = 0
return scores + mask
def reset(self):
self.sent_blocks = 0
# 3) StoppingCriteria fΓΌr EOS ---------------------------------------
class EosStoppingCriteria(StoppingCriteria):
def __init__(self, eos_token_id: int):
self.eos_token_id = eos_token_id
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
if input_ids.shape[1] > 0 and input_ids[:, -1] == self.eos_token_id:
return True
return False
# 4) Benutzerdefinierter AudioStreamer -------------------------------
class AudioStreamer(BaseStreamer):
def __init__(self, ws: WebSocket, snac_decoder: SNAC, audio_mask: AudioMask, loop: asyncio.AbstractEventLoop, target_device: str):
self.ws = ws
self.snac = snac_decoder
self.masker = audio_mask
self.loop = loop
self.device = target_device
self.buf: list[int] = []
self.tasks = set()
def _decode_block(self, block7: list[int]) -> bytes:
"""
Decodes a block of 7 audio token values (AUDIO_BASE subtracted) into audio bytes.
NOTE: Extracts base code value (0-4095) using modulo, assuming
input values represent (slot_offset + code_value).
Maps extracted values using the structure potentially correct for Kartoffel_Orpheus.
"""
if len(block7) != 7:
print(f"Streamer Warning: _decode_block received {len(block7)} tokens, expected 7. Skipping.")
return b""
try:
# --- Extract base code value (0 to CODEBOOK_SIZE-1) for each slot using modulo ---
code_val_0 = block7[0] % CODEBOOK_SIZE
code_val_1 = block7[1] % CODEBOOK_SIZE
code_val_2 = block7[2] % CODEBOOK_SIZE
code_val_3 = block7[3] % CODEBOOK_SIZE
code_val_4 = block7[4] % CODEBOOK_SIZE
code_val_5 = block7[5] % CODEBOOK_SIZE
code_val_6 = block7[6] % CODEBOOK_SIZE
# --- Map the extracted code values to the SNAC codebooks (l1, l2, l3) ---
# Using the structure from the user's previous version, believed to be correct
l1 = [code_val_0]
l2 = [code_val_1, code_val_4]
l3 = [code_val_2, code_val_3, code_val_5, code_val_6]
except IndexError:
print(f"Streamer Error: Index out of bounds during token mapping. Block: {block7}")
return b""
except Exception as e_map: # Catch potential issues with modulo/mapping
print(f"Streamer Error: Exception during code value extraction/mapping: {e_map}. Block: {block7}")
return b""
# --- Convert lists to tensors on the correct device ---
try:
codes_l1 = torch.tensor(l1, dtype=torch.long, device=self.device).unsqueeze(0)
codes_l2 = torch.tensor(l2, dtype=torch.long, device=self.device).unsqueeze(0)
codes_l3 = torch.tensor(l3, dtype=torch.long, device=self.device).unsqueeze(0)
codes = [codes_l1, codes_l2, codes_l3]
except Exception as e_tensor:
print(f"Streamer Error: Exception during tensor conversion: {e_tensor}. l1={l1}, l2={l2}, l3={l3}")
return b""
# --- Decode using SNAC ---
try:
with torch.no_grad():
# self.snac should already be on self.device from load_models_startup
audio = self.snac.decode(codes)[0] # Decode expects list of tensors, result might have batch dim
except Exception as e_decode:
# Add more detailed logging here if it fails again
print(f"Streamer Error: Exception during snac.decode: {e_decode}")
print(f"Input codes shapes: {[c.shape for c in codes]}")
print(f"Input codes dtypes: {[c.dtype for c in codes]}")
print(f"Input codes devices: {[c.device for c in codes]}")
# Avoid printing potentially huge lists, maybe just check min/max?
print(f"Input code values (min/max): L1({min(l1)}/{max(l1)}) L2({min(l2)}/{max(l2)}) L3({min(l3)}/{max(l3)})")
return b""
# --- Post-processing ---
try:
audio_np = audio.squeeze().detach().cpu().numpy()
audio_bytes = (audio_np * 32767).astype("int16").tobytes()
return audio_bytes
except Exception as e_post:
print(f"Streamer Error: Exception during post-processing: {e_post}. Audio tensor shape: {audio.shape}")
return b""
async def _send_audio_bytes(self, data: bytes):
"""Coroutine to send bytes over WebSocket."""
if not data:
return
try:
await self.ws.send_bytes(data)
except WebSocketDisconnect:
print("Streamer: WebSocket disconnected during send.")
except Exception as e:
print(f"Streamer: Error sending bytes: {e}")
def put(self, value: torch.LongTensor):
"""
Receives new token IDs (Tensor) from generate().
Processes tokens, decodes full blocks, and schedules sending.
"""
if value.numel() == 0:
return
new_token_ids = value.squeeze().tolist()
if isinstance(new_token_ids, int):
new_token_ids = [new_token_ids]
for t in new_token_ids:
if t == EOS_TOKEN:
break
if t == NEW_BLOCK:
self.buf.clear()
continue
if AUDIO_BASE <= t < AUDIO_BASE + AUDIO_SPAN:
self.buf.append(t - AUDIO_BASE) # Store value relative to base
# else: # Optionally log ignored tokens
# print(f"Streamer Warning: Ignoring unexpected token {t}")
if len(self.buf) == 7:
audio_bytes = self._decode_block(self.buf)
self.buf.clear()
if audio_bytes:
future = asyncio.run_coroutine_threadsafe(self._send_audio_bytes(audio_bytes), self.loop)
self.tasks.add(future)
future.add_done_callback(self.tasks.discard)
if self.masker.sent_blocks == 0:
self.masker.sent_blocks = 1
def end(self):
"""Called by generate() when generation finishes."""
if len(self.buf) > 0:
print(f"Streamer: End of generation with incomplete block ({len(self.buf)} tokens). Discarding.")
self.buf.clear()
# print(f"Streamer: Generation finished. Pending send tasks: {len(self.tasks)}")
pass
# 5) FastAPI App ------------------------------------------------------
app = FastAPI()
@app.on_event("startup")
async def load_models_startup():
global tok, model, snac, masker, stopping_criteria, device, AUDIO_IDS_CPU
print(f"π Starting up on device: {device}")
print("β³ Lade Modelle β¦", flush=True)
tok = AutoTokenizer.from_pretrained(REPO)
print("Tokenizer loaded.")
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
print(f"SNAC loaded to {device}.") # Use the global device variable
model_dtype = torch.float32
if device == "cuda":
if torch.cuda.is_bf16_supported():
model_dtype = torch.bfloat16
print("Using bfloat16 for model.")
else:
model_dtype = torch.float16
print("Using float16 for model.")
model = AutoModelForCausalLM.from_pretrained(
REPO,
device_map={"": 0} if device == "cuda" else None,
torch_dtype=model_dtype,
low_cpu_mem_usage=True,
)
model.config.pad_token_id = model.config.eos_token_id
print(f"Model loaded to {model.device} with dtype {model.dtype}.")
model.eval()
audio_ids_device = AUDIO_IDS_CPU.to(device)
masker = AudioMask(audio_ids_device, NEW_BLOCK, EOS_TOKEN)
print("AudioMask initialized.")
stopping_criteria = StoppingCriteriaList([EosStoppingCriteria(EOS_TOKEN)])
print("StoppingCriteria initialized.")
print("β
Modelle geladen und bereit!", flush=True)
@app.get("/")
def hello():
return {"status": "ok", "message": "TTS Service is running"}
# 6) Helper zum Prompt Bauen -------------------------------------------
def build_prompt(text: str, voice: str) -> tuple[torch.Tensor, torch.Tensor]:
"""Builds the input_ids and attention_mask for the model."""
prompt_text = f"{voice}: {text}"
prompt_ids = tok(prompt_text, return_tensors="pt").input_ids.to(device)
input_ids = torch.cat([
torch.tensor([[START_TOKEN]], device=device, dtype=torch.long),
prompt_ids,
torch.tensor([[NEW_BLOCK]], device=device, dtype=torch.long)
], dim=1)
attention_mask = torch.ones_like(input_ids)
return input_ids, attention_mask
# 7) WebSocketβEndpoint (vereinfacht mit Streamer) ---------------------
@app.websocket("/ws/tts")
async def tts(ws: WebSocket):
await ws.accept()
print("π Client connected")
streamer = None
main_loop = asyncio.get_running_loop()
try:
req_text = await ws.receive_text()
print(f"Received request: {req_text}")
req = json.loads(req_text)
text = req.get("text", "Hallo Welt, wie geht es dir heute?")
voice = req.get("voice", "Jakob")
if not text:
print("β οΈ Request text is empty.")
await ws.close(code=1003, reason="Text cannot be empty")
return
print(f"Generating audio for: '{text}' with voice '{voice}'")
ids, attn = build_prompt(text, voice)
masker.reset()
streamer = AudioStreamer(ws, snac, masker, main_loop, device)
print("Starting generation in background thread...")
await asyncio.to_thread(
model.generate,
input_ids=ids,
attention_mask=attn,
max_new_tokens=1500,
logits_processor=[masker],
stopping_criteria=stopping_criteria,
do_sample=False, # Using greedy decoding
use_cache=True,
streamer=streamer
)
print("Generation thread finished.")
except WebSocketDisconnect:
print("π Client disconnected.")
except json.JSONDecodeError:
print("β Invalid JSON received.")
if ws.client_state.name == "CONNECTED":
await ws.close(code=1003, reason="Invalid JSON format")
except Exception as e:
error_details = traceback.format_exc()
print(f"β WSβError: {e}\n{error_details}", flush=True)
error_payload = json.dumps({"error": str(e)})
try:
if ws.client_state.name == "CONNECTED":
await ws.send_text(error_payload)
except Exception:
pass
if ws.client_state.name == "CONNECTED":
await ws.close(code=1011)
finally:
if streamer:
try:
streamer.end()
except Exception as e_end:
print(f"Error during streamer.end(): {e_end}")
print("Closing connection.")
if ws.client_state.name == "CONNECTED":
try:
await ws.close(code=1000)
except RuntimeError as e_close:
print(f"Runtime error closing websocket: {e_close}")
except Exception as e_close_final:
print(f"Error closing websocket: {e_close_final}")
elif ws.client_state.name != "DISCONNECTED":
print(f"WebSocket final state: {ws.client_state.name}")
print("Connection closed.")
# 8) DevβStart --------------------------------------------------------
if __name__ == "__main__":
import uvicorn
print("Starting Uvicorn server...")
uvicorn.run("app:app", host="0.0.0.0", port=7860, log_level="info") |