File size: 18,385 Bytes
0b5b901 dbb4a9f 4189fe1 9bf14d0 dbb4a9f 0316ec3 e3958ab 479f253 dbb4a9f 479f253 2008a3f dbb4a9f e3958ab dbb4a9f 55145d2 dbb4a9f 55145d2 dbb4a9f e3958ab dbb4a9f 479f253 dbb4a9f 55145d2 e3958ab dbb4a9f 55145d2 dbb4a9f e3958ab dbb4a9f 55145d2 dbb4a9f a0cc672 dbb4a9f a0cc672 e3958ab dbb4a9f 0dfc310 dbb4a9f 55145d2 dbb4a9f 55145d2 641d199 dbb4a9f 55145d2 641d199 dbb4a9f 55145d2 dbb4a9f 55145d2 dbb4a9f 641d199 55145d2 dbb4a9f 55145d2 dbb4a9f 55145d2 dbb4a9f 55145d2 dbb4a9f 55145d2 dbb4a9f 55145d2 dbb4a9f 55145d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
# app.py ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
import os
import json
import torch
import asyncio
import traceback # Import traceback for better error logging
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from huggingface_hub import login
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, StoppingCriteria, StoppingCriteriaList
# Import BaseStreamer for the interface
from transformers.generation.streamers import BaseStreamer
from snac import SNAC # Ensure you have 'pip install snac'
# --- Globals (populated in load_models) ---
tok = None
model = None
snac = None
masker = None
stopping_criteria = None
device = "cuda" if torch.cuda.is_available() else "cpu"
# 0) Login + Device ---------------------------------------------------
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN:
print("π Logging in to Hugging Face Hub...")
login(HF_TOKEN)
# torch.backends.cuda.enable_flash_sdp(False) # Uncomment if needed for PyTorchβ2.2βBug
# 1) Konstanten -------------------------------------------------------
REPO = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
# CHUNK_TOKENS = 50 # Not directly used by us with the streamer approach
START_TOKEN = 128259
NEW_BLOCK = 128257
EOS_TOKEN = 128258
AUDIO_BASE = 128266
AUDIO_SPAN = 4096 * 7 # 28672 Codes
# Create AUDIO_IDS on the correct device later in load_models
AUDIO_IDS_CPU = torch.arange(AUDIO_BASE, AUDIO_BASE + AUDIO_SPAN)
# 2) LogitβMask -------------------------------------------------------
class AudioMask(LogitsProcessor):
def __init__(self, audio_ids: torch.Tensor, new_block_token_id: int, eos_token_id: int):
super().__init__()
# Allow NEW_BLOCK and all valid audio tokens initially
self.allow = torch.cat([
torch.tensor([new_block_token_id], device=audio_ids.device), # Add NEW_BLOCK token ID
audio_ids
], dim=0)
self.eos = torch.tensor([eos_token_id], device=audio_ids.device) # Store EOS token ID as tensor
self.allow_with_eos = torch.cat([self.allow, self.eos], dim=0) # Precompute combined tensor
self.sent_blocks = 0 # State: Number of audio blocks sent
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
# Determine which tokens are allowed based on whether blocks have been sent
current_allow = self.allow_with_eos if self.sent_blocks > 0 else self.allow
# Create a mask initialized to negative infinity
mask = torch.full_like(scores, float("-inf"))
# Set allowed token scores to 0 (effectively allowing them)
mask[:, current_allow] = 0
# Apply the mask to the scores
return scores + mask
def reset(self):
"""Resets the state for a new generation request."""
self.sent_blocks = 0
# 3) StoppingCriteria fΓΌr EOS ---------------------------------------
# generate() needs explicit stopping criteria when using a streamer
class EosStoppingCriteria(StoppingCriteria):
def __init__(self, eos_token_id: int):
self.eos_token_id = eos_token_id
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
# Check if the *last* generated token is the EOS token
if input_ids.shape[1] > 0 and input_ids[:, -1] == self.eos_token_id:
# print("StoppingCriteria: EOS detected.")
return True
return False
# 4) Benutzerdefinierter AudioStreamer -------------------------------
class AudioStreamer(BaseStreamer):
# --- Updated __init__ to accept target_device ---
def __init__(self, ws: WebSocket, snac_decoder: SNAC, audio_mask: AudioMask, loop: asyncio.AbstractEventLoop, target_device: str):
self.ws = ws
self.snac = snac_decoder
self.masker = audio_mask # Reference to the mask to update sent_blocks
self.loop = loop # Event loop of the main thread for run_coroutine_threadsafe
# --- Use the passed target_device ---
self.device = target_device
self.buf: list[int] = [] # Buffer for audio token values (AUDIO_BASE subtracted)
self.tasks = set() # Keep track of pending send tasks
def _decode_block(self, block7: list[int]) -> bytes:
"""
Decodes a block of 7 audio token values (AUDIO_BASE subtracted) into audio bytes.
NOTE: The mapping from the 7 tokens to the 3 SNAC codebooks (l1, l2, l3)
is based on the structure found in the previous while-loop version.
If audio is distorted, this mapping is the primary suspect.
Ensure this mapping is correct for the specific model!
"""
if len(block7) != 7:
print(f"Streamer Warning: _decode_block received {len(block7)} tokens, expected 7. Skipping.")
return b"" # Return empty bytes if block is incomplete
# --- Mapping derived from previous user version (indices [0], [1,4], [2,3,5,6]) ---
# This seems more likely to be correct for Kartoffel_Orpheus if the previous version worked.
try:
l1 = [block7[0]] # Index 0
l2 = [block7[1], block7[4]] # Indices 1, 4
l3 = [block7[2], block7[3], block7[5], block7[6]] # Indices 2, 3, 5, 6
except IndexError:
print(f"Streamer Error: Index out of bounds during token mapping. Block: {block7}")
return b""
# --- Alternative Hypothesis (commented out): Interleaving mapping ---
# try:
# l1 = [block7[0], block7[3], block7[6]] # Codebook 1 indices: 0, 3, 6
# l2 = [block7[1], block7[4]] # Codebook 2 indices: 1, 4
# l3 = [block7[2], block7[5]] # Codebook 3 indices: 2, 5
# except IndexError:
# print(f"Streamer Error: Index out of bounds during token mapping. Block: {block7}")
# return b""
# --- End Alternative Hypothesis ---
# Convert lists to tensors on the correct device
# Use self.device which was set correctly in __init__
codes_l1 = torch.tensor(l1, dtype=torch.long, device=self.device).unsqueeze(0)
codes_l2 = torch.tensor(l2, dtype=torch.long, device=self.device).unsqueeze(0)
codes_l3 = torch.tensor(l3, dtype=torch.long, device=self.device).unsqueeze(0)
codes = [codes_l1, codes_l2, codes_l3] # List of tensors for SNAC
# Decode using SNAC
with torch.no_grad():
# self.snac should already be on self.device from load_models_startup
audio = self.snac.decode(codes)[0] # Decode expects list of tensors, result might have batch dim
# Squeeze, move to CPU, convert to numpy
audio_np = audio.squeeze().detach().cpu().numpy()
# Convert to 16-bit PCM bytes
audio_bytes = (audio_np * 32767).astype("int16").tobytes()
return audio_bytes
async def _send_audio_bytes(self, data: bytes):
"""Coroutine to send bytes over WebSocket."""
if not data: # Don't send empty bytes
return
try:
await self.ws.send_bytes(data)
# print(f"Streamer: Sent {len(data)} audio bytes.")
except WebSocketDisconnect:
print("Streamer: WebSocket disconnected during send.")
except Exception as e:
print(f"Streamer: Error sending bytes: {e}")
def put(self, value: torch.LongTensor):
"""
Receives new token IDs (Tensor) from generate() (runs in worker thread).
Processes tokens, decodes full blocks, and schedules sending via run_coroutine_threadsafe.
"""
# Ensure value is on CPU and flatten to a list of ints
if value.numel() == 0:
return
new_token_ids = value.squeeze().tolist()
if isinstance(new_token_ids, int): # Handle single token case
new_token_ids = [new_token_ids]
for t in new_token_ids:
if t == EOS_TOKEN:
# print("Streamer: EOS token encountered.")
# EOS is handled by StoppingCriteria, no action needed here except maybe logging.
break # Stop processing this batch if EOS is found
if t == NEW_BLOCK:
# print("Streamer: NEW_BLOCK token encountered.")
# NEW_BLOCK indicates the start of audio, might reset buffer if needed
self.buf.clear()
continue # Move to the next token
# Check if token is within the expected audio range
if AUDIO_BASE <= t < AUDIO_BASE + AUDIO_SPAN:
# Store value relative to base (IMPORTANT for _decode_block)
self.buf.append(t - AUDIO_BASE)
else:
# Log unexpected tokens (like START_TOKEN or others if generation goes wrong)
# print(f"Streamer Warning: Ignoring unexpected token {t}")
pass # Ignore tokens outside the audio range
# If buffer has 7 tokens, decode and send
if len(self.buf) == 7:
audio_bytes = self._decode_block(self.buf)
self.buf.clear() # Clear buffer after processing
if audio_bytes: # Only send if decoding was successful
# Schedule the async send function to run on the main event loop
future = asyncio.run_coroutine_threadsafe(self._send_audio_bytes(audio_bytes), self.loop)
self.tasks.add(future)
# Optional: Remove completed tasks to prevent memory leak if generation is very long
future.add_done_callback(self.tasks.discard)
# Allow EOS only after the first full block has been processed and scheduled for sending
if self.masker.sent_blocks == 0:
# print("Streamer: First audio block processed, allowing EOS.")
self.masker.sent_blocks = 1 # Update state in the mask
# Note: No need to explicitly wait for tasks here. put() should return quickly.
def end(self):
"""Called by generate() when generation finishes."""
# Handle any remaining tokens in the buffer (optional, here we discard them)
if len(self.buf) > 0:
print(f"Streamer: End of generation with incomplete block ({len(self.buf)} tokens). Discarding.")
self.buf.clear()
# Optional: Wait briefly for any outstanding send tasks to complete?
# This is tricky because end() is sync. A robust solution might involve
# signaling the WebSocket handler to wait before closing.
# For simplicity, we rely on FastAPI/Uvicorn's graceful shutdown handling.
# print(f"Streamer: Generation finished. Pending send tasks: {len(self.tasks)}")
pass
# 5) FastAPI App ------------------------------------------------------
app = FastAPI()
@app.on_event("startup")
async def load_models_startup(): # Make startup async if needed for future async loads
global tok, model, snac, masker, stopping_criteria, device, AUDIO_IDS_CPU
print(f"π Starting up on device: {device}")
print("β³ Lade Modelle β¦", flush=True)
tok = AutoTokenizer.from_pretrained(REPO)
print("Tokenizer loaded.")
# Load SNAC first (usually smaller)
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
# --- FIXED Print statement ---
print(f"SNAC loaded to {device}.") # Use the global device variable
# Load the main model
# Determine appropriate dtype based on device and support
model_dtype = torch.float32 # Default to float32 for CPU
if device == "cuda":
if torch.cuda.is_bf16_supported():
model_dtype = torch.bfloat16
print("Using bfloat16 for model.")
else:
model_dtype = torch.float16 # Fallback to float16 if bfloat16 not supported
print("Using float16 for model.")
model = AutoModelForCausalLM.from_pretrained(
REPO,
device_map={"": 0} if device == "cuda" else None, # Assign to GPU 0 if cuda
torch_dtype=model_dtype,
low_cpu_mem_usage=True, # Good practice for large models
)
model.config.pad_token_id = model.config.eos_token_id # Set pad token
print(f"Model loaded to {model.device} with dtype {model.dtype}.")
# Ensure model is in evaluation mode
model.eval()
# Initialize AudioMask (needs AUDIO_IDS on the correct device)
audio_ids_device = AUDIO_IDS_CPU.to(device)
masker = AudioMask(audio_ids_device, NEW_BLOCK, EOS_TOKEN)
print("AudioMask initialized.")
# Initialize StoppingCriteria
# IMPORTANT: Create the list and add the criteria instance
stopping_criteria = StoppingCriteriaList([EosStoppingCriteria(EOS_TOKEN)])
print("StoppingCriteria initialized.")
print("β
Modelle geladen und bereit!", flush=True)
@app.get("/")
def hello():
return {"status": "ok", "message": "TTS Service is running"}
# 6) Helper zum Prompt Bauen -------------------------------------------
def build_prompt(text: str, voice: str) -> tuple[torch.Tensor, torch.Tensor]:
"""Builds the input_ids and attention_mask for the model."""
# Format: <START> <VOICE>: <TEXT> <NEW_BLOCK>
prompt_text = f"{voice}: {text}"
prompt_ids = tok(prompt_text, return_tensors="pt").input_ids.to(device)
# Construct input_ids tensor
input_ids = torch.cat([
torch.tensor([[START_TOKEN]], device=device, dtype=torch.long), # Start token
prompt_ids, # Encoded prompt
torch.tensor([[NEW_BLOCK]], device=device, dtype=torch.long) # New block token to trigger audio
], dim=1)
# Create attention mask (all ones)
attention_mask = torch.ones_like(input_ids)
return input_ids, attention_mask
# 7) WebSocketβEndpoint (vereinfacht mit Streamer) ---------------------
@app.websocket("/ws/tts")
async def tts(ws: WebSocket):
await ws.accept()
print("π Client connected")
streamer = None # Initialize for finally block
main_loop = asyncio.get_running_loop() # Get the current event loop
try:
# Receive configuration
req_text = await ws.receive_text()
print(f"Received request: {req_text}")
req = json.loads(req_text)
text = req.get("text", "Hallo Welt, wie geht es dir heute?") # Default text
voice = req.get("voice", "Jakob") # Default voice
if not text:
print("β οΈ Request text is empty.")
await ws.close(code=1003, reason="Text cannot be empty") # 1003 = Cannot accept data type
return
print(f"Generating audio for: '{text}' with voice '{voice}'")
# Prepare prompt
ids, attn = build_prompt(text, voice)
# --- Reset stateful components ---
masker.reset() # CRITICAL: Reset the mask state for the new request
# --- Create Streamer Instance ---
# --- Pass the global 'device' variable ---
streamer = AudioStreamer(ws, snac, masker, main_loop, device)
# --- Run model.generate in a separate thread ---
# This prevents blocking the main FastAPI event loop
print("Starting generation in background thread...")
await asyncio.to_thread(
model.generate,
input_ids=ids,
attention_mask=attn,
max_new_tokens=1500, # Limit generation length (adjust as needed)
logits_processor=[masker],
stopping_criteria=stopping_criteria,
do_sample=False, # Use greedy decoding for potentially more stable audio
# do_sample=True, temperature=0.7, top_p=0.95, # Or use sampling
use_cache=True,
streamer=streamer # Pass the custom streamer
# No need to manage past_key_values manually
)
print("Generation thread finished.")
except WebSocketDisconnect:
print("π Client disconnected.")
except json.JSONDecodeError:
print("β Invalid JSON received.")
if ws.client_state.name == "CONNECTED":
await ws.close(code=1003, reason="Invalid JSON format")
except Exception as e:
error_details = traceback.format_exc()
print(f"β WSβError: {e}\n{error_details}", flush=True)
# Try to send an error message before closing, if possible
error_payload = json.dumps({"error": str(e)})
try:
if ws.client_state.name == "CONNECTED":
await ws.send_text(error_payload) # Send error as text/json
except Exception:
pass # Ignore error during error reporting
# Close with internal server error code
if ws.client_state.name == "CONNECTED":
await ws.close(code=1011) # 1011 = Internal Server Error
finally:
# Ensure streamer's end method is called if it exists
if streamer:
try:
# print("Calling streamer.end()")
streamer.end()
except Exception as e_end:
print(f"Error during streamer.end(): {e_end}")
# Ensure WebSocket is closed
print("Closing connection.")
if ws.client_state.name == "CONNECTED":
try:
await ws.close(code=1000) # 1000 = Normal Closure
except RuntimeError as e_close:
# Can happen if connection is already closing/closed
print(f"Runtime error closing websocket: {e_close}")
except Exception as e_close_final:
print(f"Error closing websocket: {e_close_final}")
elif ws.client_state.name != "DISCONNECTED":
print(f"WebSocket final state: {ws.client_state.name}")
print("Connection closed.")
# 8) DevβStart --------------------------------------------------------
if __name__ == "__main__":
import uvicorn
print("Starting Uvicorn server...")
# Use reload=True only for development, remove for production
# Consider adding --workers 1 if you experience issues with multiple workers and global state/GPU memory
uvicorn.run("app:app", host="0.0.0.0", port=7860, log_level="info") #, reload=True) |